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Abstract

We use the technique of Fischer matrices to write a program to produce the character table
of a group of shape (2 × 2.G):2 from the character tables of G, G:2, 2.G and 2.G:2. We also
supply a simplified proof of a result frequently used in the Fischer matrices method.

Let G be a finite group with an automorphism of order 2 and a double cover. We may form a
group of shape (2× 2.G):2 which we write as

(〈x〉 × 〈z〉.G):〈σ〉

so that σ acts to swap x with xz and 〈x, z, σ〉 ∼= D8. This group has three interesting subgroups of
index 2:

G+ = 〈z〉.G:〈σ〉 G− = 〈z〉.G.〈xσ〉 G0 = 〈x〉 × 〈z〉.G

Here G+ and G− are representatives of the two isomorphism classes of groups of shape 2.G.2
(they are isoclinic, as explained in [CCN+85]). To produce the character table of (2 × 2.G):2 all
we must do is determine the class fusion from G0 and the character values on the outer conjugacy
classes. The ATLAS [CCN+85] map of the character table of (2× 2.G):2 is:

〈xz〉.G 〈xz〉.G:〈σ〉

〈z〉.G 〈z〉.G:〈σ〉

〈x〉 × G 〈x〉 × G:〈σ〉

G G:〈σ〉

s

s

r

r

r t

Here G has r conjugacy classes, 2.G has s characters that are faithful on z, and G:2 has t conjugacy
classes of outer elements.

Let χ be a character in the 〈z〉.G square, then χ(z) = χ(xz) = −χ(1) and χ(x) = χ(1).
However, χσ(x) = χ(xz) = −χ(1) and χσ(xz) = χ(x) = χ(1). Thus σ must fuse characters in
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the 〈z〉.G square with characters in the 〈xz〉.G square. Therefore then 〈z〉.G:〈σ〉 and 〈xz〉.G:〈σ〉
squares contain only zeros. Indeed, there is no subgroup of shape 2.G:2.

Each outer class [g] of G:2 lifts to two classes in 22.G:2, namely [g, zg] and [xg, xzg]. To see
this observe that gx = xgx = xxzg = zg, which also shows that if the order of g is indivisible by
4 then the order of xg is twice the order of g. A character χ ∈ Irr G:2 takes value χ(xg) = −χ(g)
which, it would seem, completes the table.

We wish to improve the above analysis to sufficient precision to allow the character table to
actually be produced. There are about 12 different ways in which conjugacy classes of G:2 can
lift to 22.G:2, and these are explained in the case analysis beginning on page 4 in section 3. (This
number is approximate because there are some subtleties involving the element orders which one
may use to produce further cases.) We choose to work with the example G = Fi22 because the
character table of 22.Fi22:2 is not stored in GAP [GAP02], and most of the conjugacy class types
occur (the three that don’t can be seen in A5 or L2(17)).

We compute the character table using Fischer matrices as in this case we can eliminate all
uncertainty about the entries of the matrices. Thus assembling the character table is easy. We
shall need the character table of G:2 and the projective character table of G. This is no more
information that we needed above, for the projective character table of G is easily deduced from
the character table of 2.G.

1 Fischer Matrices

The technique of Fischer matrices [Fis91] seems generally to have been used to calculate character
tables of maximal subgroups of sporadic simple groups and their automorphism groups, and
recently has enjoyed something of a revival, e.g., [AM03] and similar papers.

The Fischer matrices method relies on the fact that every irreducible character can be obtained
by induction from the inertia groups. Specifically, let Ḡ = N.G be a group and let θ1, θ2, . . . , θt be
representatives for the orbits of G on Irr N (by convention θ1 = 1). Let H̄i be the inertia group of
θi in Ḡ. If ψi is a (possibly projective) extension of θi to H̄i then ψiη↑Ḡ is irreducible, where η is
inflated from Hi = H̄i/N. In fact

Irr Ḡ =
t⋃

i=1

{
(ψiη)↑Ḡ | η ∈ Irr H̄i and N ⊆ ker η

}
This is shown, for example, in [Isa94] and [Kar85].

We now let [g] be a conjugacy class of G. Hi ∩ [g] splits into a number of Hi conjugacy classes,
let representatives be yk ∈ Hi for 1 6 k 6 r. Let these lift to classes with representatives ylk in H̄i.
When η̂ ∈ Irr Hi lifts to η ∈ Irr H̄i this gives η(ylk ) = η̂(yk) for all l.

Theorem 1 With notation as above,

(ψiη)↑Ḡ(xj) =
r

∑
k=1

η̂(yk) ∑
{l|ylk

∼H̄i
xj}

|CḠ(xj)|
|CH̄i

(ylk )|
ψi(ylk )
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Proof. The induction formula for chosen i and j gives

(ψiη)↑Ḡ(xj) =
1
|H̄i| ∑

{h̄∈Ḡ|xh̄
j ∈H̄i}

ψiη(xh̄
j )

Now, the classes [ylk ]H̄i
partition H̄i, so the statement xh̄

j ∈ H̄i is equivalent to xh̄
j ∼H̄i

ylk for those
ylk that are Ḡ-conjugate to xj, i.e.,

(ψiη)↑Ḡ(xj) =
1
|H̄i|

r

∑
k=1

∑
{l|ylk

∼Ḡ xj}
∑

{h̄∈Ḡ|xh̄
j ∼H̄i

ylk
}

ψiη(xh̄
j )

But ψiη is a class function of H̄i and so its value is constant over the range of the rightmost sum
above. Hence

(ψiη)↑Ḡ(xj) =
1
|H̄i|

r

∑
k=1

∑
{l|ylk

∼Ḡ xj}
|{h̄ ∈ Ḡ | xh̄

j ∼H̄i
ylk}|ψiη(ylk )

=
1
|H̄i|

r

∑
k=1

∑
{l|ylk

∼Ḡ xj}
|[ylk ]H̄i

||{h̄ ∈ Ḡ | xh̄
j = ylk}|ψiη(ylk )

=
1
|H̄i|

r

∑
k=1

∑
{l|ylk

∼Ḡ xj}
|[ylk ]H̄i

||{h̄ ∈ Ḡ | xh̄
j = xj}|ψiη(ylk )

=
r

∑
k=1

∑
{l|ylk

∼Ḡ xj}

|CḠ(xj)|
|CH̄i

(ylk )|
ψiη(ylk )

=
r

∑
k=1

η̂(yk) ∑
{l|ylk

∼Ḡ xj}

|CḠ(xj)|
|CH̄i

(ylk )|
ψi(ylk )

�

Note that by writing

a(i)
kj = ∑

{l|ylk
∼Ḡ xj}

|CḠ(xj)|
|CH̄i

(ylk )|
ψi(ylk ) (2)

(c.f. equation 1.10.5 in [Fis91]) Theorem 1 becomes

ψiη↑Ḡ(xj) =
r

∑
k=1

a(i)
kj η̂(yk)

This can be interpreted as multiplication of the matrix Mi(g) = (a(i)
kj ) by a portion of the character

table of Hi. The Fischer matrix for the class [g]G is

M(g) =


M1(g)
M2(g)

...
Mt(g)


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where if Hi ∩ [g] = ∅ then Mi(g) is not defined and is omitted from M(g).
The various properties of character tables can be used to deduce constraints on the entries of

the Fischer matrices, e.g., the orthogonality relations give a weighted orthogonality for the Fischer
matrices. The Fischer matrices method relies on using these properties to deduce the entries of
the matrices.

2 The Character Table Of 22.Fi22:2

The non-split extension of N = 22 by G = Fi22:2 provides a suitable example of a Fischer matrices
calculation. We use information from the character tables of the groups 2.Fi22:2 and 2 × 2.Fi22:2
to check our calculations.

We write our group Ḡ = 22.Fi22:2 ∼= (2× 2.Fi22):2 as

(〈x〉 × 〈z〉.Fi22):〈σ〉

so that σ acts to swap x with xz and 〈x, z, σ〉 ∼= D8. Ḡ has three orbits on elements of the normal
22 group and the stabilisers are:

1. Ḡ fixing the identity. The trivial character of 22 extends to Ḡ.

2. 2 × 2.Fi22 fixing x and xz. Neither of the other two characters of the 22 that represent z
faithfully can extend to the inertia group for the following reason: Choose g ∈ 22.Fi22 that
is conjugate to zg (which is possible since the extension is non-split) and let χ be such an
extension. Then χ(g) = χ(zg) which is non-zero as χ is linear. But z is represented as −1
which forces χ(g) = −χ(zg).

3. Ḡ fixing z. The character that takes values −1 on x and xz extends to the inertia group.

The required inertia factors are therefore Fi22:2, Fi22, and Fi22:2 respectively, and we must use the
projective character table of Fi22.

The program to construct the character table is attached (ct22g2.gap) which defines a func-
tion, CharacterTableTwoSquaredGsplitTwo, for constructing the character table of such a group.

The calculations are described in the following sections.

3 Conjugacy Classes and Fischer Matrices

We can easily find the number of conjugacy classes of 22.Fi22:2 lying above a class [g] of Fi22:2 by
counting class fusions from our inertia groups and using the fact that Fischer matrices are square.
With a little more work we can also compute the class fusion from 2× 2.Fi22 which we use later
to check our calculations.

We consider the diagram in Figure 1(a), and for g ∈ 2.Fi22:2 write ĝ for the image of g under
the natural homomorphism to Fi22:2. The following cases arise:

1. Let [ĝ] be a conjugacy class of Fi22 that does not fuse with another class under the action of
σ.
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Fi22
class fusion−−−−−−−−−→ Fi22:2

lift

y ylift

2.Fi22
class fusion−−−−−−−−−→ 2.Fi22:2

(a) The groups.

1A −−−−→ 1Ay y
+1A
−1A −−−−→ +1A

−1A
(b) As in case 1(a)i.

2A −−−−→ 2Ay y
+2A
−2A −−−−→ ±2A

(c) As in case 1(a)ii.

16A 16B −−−−→ 16ABy y
±16A ±16B −−−−→ ±16AB

(d) As in case 2(a).

11A 11B −−−−→ 11ABy y
+11A +11B
−11A −11B −−−−→ 11AB −11AB

(e) As in case 2(b).

18A 18B −−−−→ 18ABy y
+18A +18B
−18A −18B −−−−→ +18A ∼ −18B

−18A ∼ +18B
(f) As in case 2(c).

Figure 1: The relationship between conjugacy classes of Fi22 and 2.Fi22:2. Horizontal arrows
are for class fusion under the automorphism, and vertical arrows show lifting to the double
cover. Diagram (a) shows the groups involved. The other diagrams give examples of some of the
possibilities. Class names are for Fi22.

(a) If g is not conjugate to zg in 2.Fi22 then:

i. If g is not conjugate to zg in 2.Fi22:2 (e.g., ĝ ∈ 1A as in Figure 1(b)) then we ob-
tain three conjugacy classes with representatives g, xg, and zg respectively. (The
second column corresponds to a class of twice the size of the other two, so xg and
xzg must fuse to this class.) Our Fischer matrix is

M([ĝ]) =

1 1 1
2 0 −2
1 −1 1


with k = 4 and f1 = 1, f2 = 2, f3 = 1. The class [ĝ] lifts to the first of these new
classes and these elements have order |g|. If g has odd order then the other two
classes contain elements of order 2|g|, otherwise they contain elements of order
|g|. (It is possible that |g| = 2|ĝ|. This case does not occur for Fi22, the smallest
ATLAS group where it does occur is L2(17).)

ii. If g is conjugate to zg in 2.Fi22:2 (e.g., ĝ ∈ 2A, as in Figure 1(c)) then we obtain
three conjugacy class representatives xg, g, and xzg. Our Fischer matrix is

M([ĝ]) =

 1 1 1
2 0 −2

−1 1 −1


with k = 2 and f1 = 1, f2 = 2, f3 = 1. The class [ĝ] must lift to the second of these
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new classes which is twice the size of the other two. The orders of the elements in
both classes is the same as the order of g.

(b) i. Suppose that g is conjugate to zg in 2.Fi22 and g has the same order as ĝ (e.g.,
ĝ ∈ 2C). Then g and zg are also conjugate in 2.Fi22:2 and xg is conjugate to xzg in
Ḡ. We thus obtain 2 conjugacy classes and our Fischer matrix is

M([ĝ]) =

(
1 1
1 −1

)

with k = 2 and f1 = 1, f2 = 1. The class [ĝ] lifts to the first of these new classes.
Both new classes contain elements with the same order as ĝ.

ii. Suppose that g is conjugate to zg in 2.Fi22 and g has twice the order of ĝ. This case
does not occur for Fi22. An example is class 2A of A5. The only difference from
case 1(b)i is the element orders which are doubled.

2. Let [ĝ] be a conjugacy class of Fi22 that is fused with a class [ĥ] in Fi22:2.

(a) If g is conjugate to zg in 2.Fi22 (e.g., g ∈ 16A as in Figure 1(d)) then we obtain two
conjugacy classes with representatives g ∼ zg ∼ h ∼ zh and zg ∼ xzg ∼ xh ∼ xzh.
The Fischer matrix is

M([ĝ]) =

(
1 1
1 −1

)
with k = 2 and f1 = 1, f2 = 1. and the class [ĝ] lifts to the first of these new classes.

(b) Suppose that g is not conjugate to zg in 2.Fi22 and [g] fuses with [h] in 2.Fi22:2 (e.g.,
ĝ ∈ 11A and ĥ ∈ 11B, as in Figure 1(e)). It follows that g ∼ h, xg ∼ xh, xzg ∼ xzh,
and zg ∼ zh and these are representatives for the 4 new conjugacy classes in that order.
Our Fischer matrix is

M([ĝ]) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


with k = 4 and f1 = f2 = f3 = f4 = 1. and 47.

(c) Suppose that g is not conjugate to zg in 2.Fi22 and [g] fuses with [zh] in 2.Fi22:2 (e.g.,
ĝ ∈ 18A and ĥ ∈ 18B, as in Figure 1(f)). The 4 new conjugacy classes are those of
xg ∼ xzh, g ∼ zh, zg ∼ h, and xzg ∼ xh in that order. The Fischer matrix is

M([ĝ]) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1

−1 1 1 −1


with k = 4 and f1 = f2 = f3 = f4 = 1.

3. Suppose now that ĝ ∈ Fi22:2 \ Fi22. Then gx = xgx = xxzg = zg so g is always conjugate to
zg in G.
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(a) Suppose that ĝ has order indivisible by 4 and lifts to one class in 2.Fi22:2 of elements
of the same order, e.g., ĝ ∈ 2D. Now, (xg)(xg) = zg2 which must have even order,
so ĝ lifts to 2 classes in Ḡ, the second (with representatives xg and xzg) consisting of
elements of twice the order of those in the first which have the same order as ĝ ∈ Fi22:2.

(b) If ĝ has order indivisible by 4 and lifts to one class in 2.Fi22:2 of elements of twice the
order, e.g., ĝ ∈ 2F. This means that (g)(g) = zg2 so ĝ lifts to 2 classes in Ḡ, the first
(with representatives g and zg) consisting of elements of twice the order of those in the
second which have the same order as ĝ ∈ Fi22:2.

(c) If ĝ has order indivisible by 4 and lifts to two classes in 2.Fi22:2 of elements of the
same order, e.g., ĝ ∈ 6M, then (zg)(zg) = g2 and (xg)(xg) = zg2. Therefore ĝ lifts to
2 classes in Ḡ, the second (with representatives xg and xzg) consisting of elements of
twice the order of those in the first which have the same order as ĝ ∈ Fi22:2.

(d) Suppose that ĝ has order divisible by 4 and lifts to 2 classes of elements of the same
order as ĝ, e.g., ĝ ∈ 8F. Then ĝ lifts to two conjugacy classes in 2.Fi22:2, both consisting
of elements of the same order as ĝ ∈ Fi22:2.

(e) Suppose that ĝ has order divisible by 4 and lifts to 2 classes of elements of the same
order as ĝ. This case does not occur in Fi22, an example is class 4A of A5. In this case ĝ
lifts to two conjugacy classes in 2.Fi22:2, both consisting of elements of twice the order
as ĝ ∈ Fi22:2.

In all of these cases the Fischer matrix is
(

1 1
1 −1

)
with k = 2 and f1 = f2 = 1.

4 From Class Functions To Characters

Our Fischer matrices are only defined up to multiplication of rows by −1, and in the 4 × 4 ma-
trices any permutation of the bottom 3 rows is possible. However, we have chosen class fusion
from 2× 2.Fi22 which forces us to use the matrices given above.

Using the Fischer matrices from above, and from GAP the character table of Fi22:2 and the
projective character table of Fi22, we assemble a table of class functions χi for Ḡ that obey row
and column orthogonality. The element orders follow from the calculations above, as does class
fusion from 2 × 2.Fi22. Because of our choice of ordering of the conjugacy classes we can also
write down the projection map to 2.Fi22:2

We use these maps to restrict each of our class functions to a class function ψ of the group
Fi22:2. We then check that 〈ψ, χ〉 ∈ N ∪ {0} for all χ ∈ Irr(Fi22:2). (Whenever it was not, the
reason was always because we had not used the correct Fischer matrix for our chosen ordering
of the conjugacy classes.)

5 Power Maps

To compute the power maps we observe that classes lying above [ĝ] must power up to classes
lying above [ĝp] for all p, and for odd p elements in [ng] must p-power to elements in [ngp] for
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all n ∈ 〈x, z〉. For p = 2 and ĝ ∈ Fi22 elements in [ng] square to elements in [g] and for outer
elements the 2-power map is clear from item 3 of the case analysis.

We can also use GAP to compute possible power maps from the character table. Unusually,
it produces unique p-power maps for our table and these agree with ours. Furthermore, these
agree with the power maps of 2× 2.Fi22.

To further test our class functions and power maps we check that all symmetric and anti-
symmetric parts of all irreducibles have non-negative inner products with all irreducibles.

Finally, GAP produces four possible class fusions to Fi24. There are two independent choices.

• There are two classes of elements of order 26 lying above class 13A of Fi22:2. These could
fuse either way round to the algebraically conjugate classes 26B and 26C of Fi24.

• Our labelling of the involutions x and xz was arbitrary, if we swap them then our choice
of class representatives in cases 1(a)ii, 2(b), 2(c) is effected. For example in case 2(b) the
class representatives would become (in order) g ∼ h, xzg ∼ xzh, zg ∼ zh, and zg ∼ zh.
The labelling of x and xz corresponds to the other choice for class fusion. (The classes of
elements of order 4 lying above 11A are not effected since they fuse to the same class in
Fi24.)

6 A GAP Function For The General Case

The function

CharacterTablleTwoSquaredGsplitTwo(t_g, t_g2, t_2g, t_2g2, proj1, proj2)

assembles the character table. The arguments are:

1. t g The character table of G.

2. t g2 The character table of G:2.

3. t 2g The character table of 2.G.

4. t 2g2 The character table of 2.G:2.

5. proj1 The index in ProjectivesInfo(t g) for the record with name 2.G. This is usually 1.

6. proj2 The index in ProjectivesInfo(t g2) for the record with name 2.G:2. This is usually
1.

7 Conclusions

Finally, a word of warning. We have always assumed that in 2.G:2 the normal subgroup 2.G has
a complement. However, this need not always be the case: A6 has three involutory automor-
phisms, σ, τ, and ρ = στ say, with

A6:〈σ〉 ∼= S6 A6:〈τ〉 ∼= PGL2(9) A6
.〈ρ〉 ∼= M10
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Our program can produce character tables for 22.S6 and 22.PGL2(9), but not for 22.M10. This is
because there is no group 2.A6.23, just a group (4 ◦ 2.A6).23 which is isoclinic to (2× 2.A6).23.
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