Chapter 36
MSM4P4 Representation Theory

(36.1) Representations

Definition | Let F be a field and let V be a vector space over F.

1. Define Endp(V) to be the set of all linear transformations T: V — V (endomorphisms of V).

2. Define GL (, V) to be the subset of Endp (V) consisting of the invertible transformations. This is a group under

transformation composition.

3. Define GL (n, F) to be the group of n x n invertible matrices with elements from the field F.

Clearly if V is of finite dimension n then GL (, V) and GL (n, F) are isomorphic. They are not equal as one is
a set of functions whereas the other is a set of matrices. The isomorphism arrises because the linear transfor-
mation is determined by its effect on a basis of V, giving rise to a matrix. Note also that the representation

in GL (n,C) is dependent on basis.

Definition 2 Let G be a group, F be a field, and V be a vector space over F. A group homomorphism
c:G—GL(,V)

is a representation of G over F.

It is sometimes convenient to consider a representation as a group homomorphism from G to GL (n, F)
rather than GL (, V). This causes no problem since in this case the representation is merely the composition
of ¢ with the isomorphism between GL (, V) and GL (n, F).

Definition 3 Let 0: G — H be a function and § € G. The element of H obtained by applying o to g is denoted go.

Example 4 Let G be the dihedral group of order n. So

G= <x,y |2 =y" = 1,x_1yx:y_1>

we (00 w—(f:n@) %%)

As G is generated by x and y, o extends to a representation of G over R. Similarly one may define t: G — GL (2,C)

by
XT = 0 1 T = w 0 w = ex <&>
“\1 o0 T @ P\

Define
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If ¢ is a representation of a group G over a field F then for each ¢ € G, g0 is a linear transformation.
Particular interest lies within groups whose linear transformations are closed on subspaces of a vector space

over F: in a similar fashion to a normal subgroup or ideal.

Definition 5 Let G be a group, F be a field, V be a vector space over F, and 0: G — GL (, V) be a representation. Let
W be a non-trivial proper subspace of V. If

w(gr)eW vVgeG YweW

then W is called a G-invariant subspace of V.

In such a situation ¢ induces another representation 7: G — GL (, W) defined by g7 = go forall ¢ € G.

The matrix for a linear transformation is dependent on basis. Rather than use the standard basis, it can be
convenient to find a basis for a G-invariant subspace W (dim W = m say) and extend this to a basis of V'
(dimV = n say). With vectors of V written as row vectors so that the transformation matrix acts on the
right, the columns of the transformation matrix correspond to where the basis vectors are sent under the

transformation. As the transformation is G-invariant it must therefore be of the form

The m x m sub-matrix is equal to g7; the representation restricted onto W. The zero sub-matrix indicates
what happens to the basis vectors which extend the basis of W to one of V: the co-ordinates of the vector

that are “unused” in W are sent to zero. The lower sub-matrices describe the transformation on V \ W.

Definition 6 Let o be a representation of a group G over a field F and let V be a vector space over F. If V has a

G-invariant subspace then o is called reducible. Otherwise o is irreducible.

Definition 7 Let o be a representation of a group G over a field F and let V be a vector space over F. If V has
G-invariant subspaces U and W such that V. = U ® W then o is said to be decomposable.

Reducibility and decomposability are not the same thing, though often they do coincide. The following
example illustrates the difference.

Example 8 Let G = (t | > = 1), F = Z,, and V = F? with vectors written as row vectors. Define

0 1 ,
ift #1
10
0:G—GL(2,F) by o:tw
1 0
ift=1
1

Let W = Span {(1,1)} = {(1,1)}.

0 1
(1/ 1) (1 O> = (11 1)

hence W is G-invariant and thus o is reducible. Further to this, changing basis to {(1,1),(0,1)};
(1 )= OVt =1,0=011D+01

therefore the transformation matrix for to with respect to this basis is (1) which has the form described after Defini-
tion 5.
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Suppose that V.= U ® W with U and W as proper, non-trivial subspaces which are both G-invariant. Then both U
and W must have dimension 1 with respective bases {u} and {w} say. Therefore

u(to) € Uso u = Au for some A € F

w(to) € Wsow = uw for some y € F
Hence A and y are both eigenvectors of to. Now,

0—x 1

2 2
=x"—-1=(x-1
1 0—x ( )

s0 the only eigenvalue of to is 1 meaning that y = 1 = A, and that if <a b) is an eigenvector then

@) 0)- o)

Therefore (a b) = (b u) and so the only eigenvector of to is (1 1>. As 2 distinct eigenvectors of to cannot be
found there cannot exist such U and W meaning that V is not decomposable.

(36.1.1) The Group Algebra

Definition 9 Let V be a vector space over a field F. An algebra V is V extended by a multiplication operation V x V —
V. This forms a ring.

Note that an algebra is not exactly a ring, as unlike a ring it has a scalar multiplication operation defined on

it and a field.

Definition 10 Let F be a field and G be a finite group. The group algebra FG is the |G|-dimensional vector space over
F that has basis G and multiplication on FG defined by

<2wgg><25hh>—2 RAL
g<G heG xeG |\ (gh)eGxH
x=gh

Again, this is a ring. Note that addition is indeed associative since

Yoagg+ Y Bgg =) (ag+Bg)g = Z(;;(ﬁg‘i'“g)g: Y Beg+ ) ag
g€

8€G g€G geG g€G g€G

An algebra is different from a ring because it has a scalar multiplication with a field defined on it. A homo-

morphism between algebras must also preserve the structure relating to this scalar multiplication.
Definition || An algebra homomorphism is a group homomorphism that is also a linear map.

Definition 12 Let R be a ring and V be a vector space. The R-module V is formed from V by defining an operation
-1 V X R — V which is associative, and distributive over vector addition.

A module is therefore like a vector space with 2 scalar multiplications.

For the purposes of representation theory, complex group algebras will be of interest; that is, given a group

G the algebra CG is examined.
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Let V be an n-dimensional vector space over C and let o be a representation of a group G in GL (n, C). Since

CG is a ring CG-modules may be formed, in this case by defining multiplication
V= vg = Vv(g0)

Many different CG modules may me formed, of different dimension, say.

Note that End¢ (V) is an algebra. It is a vector space, and a multiplication can be defined on it as function

composition.

Lemma I3 Let G be a finite group. If o is a representation of G over a vector space V then o can be extended to an

algebra homomorphism between CG and End¢c (V).

Proof. Let 0: G — GL (, V) be a representation of G over a vector space V. Extend ¢ to an algebra homo-
morphism ¢’ by

o' Z ngg Z wg(g0)

g€G g€G

then ¢ is an algebra homomorphism of CG to End¢(V). Now,
(2 xgg + Z .ng> o' = Z (“g JF.Bg)(g‘T) = Z ’Xg(ga) + Z .Bg(g‘T)
g<G geG g€G g€G g€G

A similar calculation can be performed for the multiplicative homomorphism property, showing that ¢’ is a

ring homomorphism. Finally, for A € C it is clear that

<A ) ocgg) o =A (Z zxgg> o’
g€G g€eG

so that ¢ is a linear map and so is an algebra homomorphism, as required. O
Lemma 14 Ifo: CG — End¢(V) is an algebra homomorphism then it restricts to a representation of G over GL (, V).

Proof. Forany g € G,
g0 10) = (3¢ Vo = 1o = idy

Hence the matrix go has an inverse, namely ¢~ !¢ and so the image of G under ¢ is contained in GL (, V).
Hence ¢ does indeed restrict to a group homomorphism of G to GL (, V). O

From the above 2 results the following equivalence has arisen.

e A matrix representation of G.

A group homomorphism of G to GL (, V).
e An algebra homomorphism of CG to End¢ (V). Note that End¢(V) = Home (V) =2 M, (C).

V has the structure of a CG module.

The group algebra CG has itself the structure of a CG module.
Lemma 15 The CG-sub-modules of a vector space V are precisely the G invariant subspaces.

Proof. If W is a G-invariant subspace of V then it is closed under the action of elements of G which defines

the structure of a CG-sub-module.

Conversely, if W is a CG-sub-module then it is a subspace of V and is closed under the action of G i.e. is

G-invariant. O
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(36.1.2) Inner Products On Modules

Let G be a finite group and V be a CG module, so V is a vector space over C that has a multiplication

with elements of G. An inner product may be defined on V, i.e. a function V x V' — C. Choosing a basis

{vi, V0, .-, Vn},
n n n _
<Z avi, ) ﬁivi> =) ap;
i—1 i=1 i=1

The effect of multiplication by elements of G on this inner product is not clear. However, a ‘nicer” inner

product can be constructed:
1
(W) =13 ) (vgwg)

g€G

This is indeed an inner product since

These properties are inherited directly from the inner produce (v, w). The merit of this new inner product
is that it is G-invariant. Let i € G then

((vh, wh)) = ((vg)h, (wg)h)

g€eG

= (v(gh), w(gh))

= G| 2 (vg,wg)

(36.1.3) Maschke’s Theorem

Theorem 16 (Maschke) Let V be a finite dimensional CG-module for a finite group G. If W is a CG-sub-module then
there exists another CG-sub-module U such that V.= W & L.

Proof. Let W be a CG-sub-module (G invariant subspace) then with the inner product defined in Section

36.1.2 the orthogonal complement of W, W may be formed, i.e.
Wt={veV|(v,w)=0 YweW}

As a complex vector space, V=W @ W, so it is now sufficient to show that W= is a G-invariant subspace
i.e. CG-sub-module. Take u € W then it must be shown that ((ug, w)) = 0 for allw € W and g € G, so that

the action of G is closed on W+.

((ug,w) = ((ug,wigg™)))
= <<ug, (wg)g ! >> (module property)
= <<u, wg_1>> (by G-invariance)

But as W is a CG-submodule wg~! € W and thus this inner product is zero, meaning that ug is indeed in
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WL which, thus, is a CG-submodule. O
Corollary 17 For vector spaces over C and for a finite group G, if V is reducible then V is decomposable.

Proof. If V is reducible then it has a G-invariant subspace W. But then by Maschke’s Theorem V = W & W
and thus V is decomposable. O

Definition 18 A matrix M € M,(C) is unitary if M~! = M where M denotes the matrix obtained from M by
replacing each element with its complex conjugate.

The importance of unitary matrices is that the linear transformation is represents preserves the inner product
with respect to which the chosen basis is orthonormal. By Gram-Schmidt an orthonormal basis can always
be found and thus:

o For a finite-dimensional vector space V, a G-invariant inner product can always be constructed on V.

e An orthonormal basis with respect to the G-invariant inner product can be found for V (Gram-
Schmidyt).

o There is a representation o: G — GL (n, V) for which go is always a unitary matrix. This happens
because the inner product is G-invariant and the basis is orthonormal relative to the same inner prod-

uct.

e Converselyif o: G — GL (n, V) and go is always a unitary matrix then taking V = C" with the usual

inner product makes the inner product G-invariant.

The objective is to write any CG-module as a direct sum of irreducible CG-modules. Clearly Maschke’s
Theorem is important here. In fact the general result follows directly by induction on the dimension of V.

Theorem 19 Let G be a finite group and V be a CG-module. Then V can be expressed as a direct sum of irreducible
CG-modules.

Proof. If dimV = 1 then V is irreducible and there is nothing to show. Suppose that dimV > 1, then
if V is irreducible there is again nothing to show; suppose therefore that V is reducible. Then V has a
proper non-trivial G-invariant subspace W say, but then by Maschke’s Theorem v = W @ W+. Furthermore
dimW < dim V and dim W+ < dim V and thus by induction

W=U oo ol and Wi =UoUja-- ol
for irreducible CG-modules U; and U]’ Hence
V=l olhe -alielield ol

i.e. V is a direct sum of irreducible CG-modules, as required. O

Thus the study of CG-modules is reduced to the study of the irreducible ones.

(36.1.4) Schur’s Lemma

Having reduced the area of interest to only irreducible CG-modules, Schur’s Lemma gives a property of

them.

Lemma 20 (Schur) The result may be stated in one of the following 3 (equivalent) forms. LEt G be a finite group,
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1. (Complex Vector Space) Let 0: G — GL (n, C) be an irreducible complex representation of G. Let T € My(C)
be a matrix with the property (go)T = T(go) for all g € G. Then T = A, for some A € C.

2. (General Vector Space) Let 0: G — GL(, V) be an irreducible representation of G. If T € Endc(V) with
(§0)T = T(go) forall g € G, then T = Aidy for some A € C.

3. (Module Theoretic) If V is an irreducible CG-module then Endcg(V) = Cidy where

d
Endc(V) % {T € Ende(V) | vT)g = WG)T W eV Vge G}
de
Cidv ¥ (Aidy | A e €}
Proof. The general vector space formulation is proven. Leto: G — GL (, V) be an irreducible representation
of G and let T € End¢(V) with (g0)T = T(go) for all g € G. As T is complex it has an eigenvalue, A say. Let

W be the A eigenspace of T, that is
W = ker (T — Aidy)

then W # {0}. Now, T(g0) = (¢0)T and certainly (go)idy = idy(g0o) so

(go)(T — Aidy) = (T — Aidy)(g0)
so w(go)(T — Aidy) = w(T — Aidy)(go)
= 0(g0)
=0

Therefore w(go) € W = ker (T — Aidy) so W is a G-invariant subspace of V. But W # {0} and V is
irreducible, therefore V = W which means that v(T — Aidy) = 0 for all v € V. Re-arranging, T = Aidy. O

(36.1.5) Orthogonality Relations

Leto: G — GL (#,C) and 7: G — GL (m, C) be irreducible representations and let X € M,;;,(C). Define

Y=Y (g0) ' X(g7) @1)
geG

Lemma 22 Where Y is defined as in Equation (21) (ho) "y (ht) = Y forallh € G.

Proof. Choosingh € G,

(ho) Y (hT) = (ho) ™! (Z (ga)1><<gr)> (h7)

g€G

= Y (ho) " Y(go) 1 X(gT)(hT)
g€G

=Y gh) toxXghT
g€G

=Y (g0) 'X(g7)

g<G
with the last line following because for fixed h € G, {gh | g € G} = G. O
Corollary 23 Ifo = Tthen Y = Al,.

Proof. If ¢ = T then Lemma 22 means that Y has the property Y = (¢0)~1Y(go) and so obeys the criteria of
Schur’s Lemma. Therefore Y = AI, for some A € C. O



8 CHAPTER 36. MSM4P4 REPRESENTATION THEORY

Furthermore, since tr B"! AB = tr A for matrices A and B, in the above tr Y = |G| tr X and thus A = @ tr X.

Making particular choices for X yields results about G. These will be of use later.

Lemma 24 Let go = [ars(g)] and X; have a single 1 in the ith diagonal position, and zero elsewhere. If Y; is formed
as in Equation (21) then

0 .
Mg = X apuls i s) = {G| s
geG T ifp=q

Proof. With notation as described,

Y= Y [ars(g7 ] Xilars(9)]

g€eG
with a little thought, this gives

Ypg = ) Z <): aps(g (X )y) atg(8) (25)
geGt=1

But (X;)st = 1 only when s = t = i and is zero otherwise, thus Equation (25) simplifies to

g = Y api(g Hayg(9)

8€G
ButY; = @ I,; and hence the result. O

Lemma 26 Let g0 = [ays(g)] and X;; have a single 1 in the (i, j) position (i # j) and zeros elsewhere. If Y;; is formed
as in Equation (21) then Y;; = [0], the null matrix and the pq entry is given by

)pq Z apl(g )a]q(g)

8€G

Proof. By Corollary 23 Y; jisa scalar matrix. Also, Y must have the same trace as X;; i which is 0. Hence Y

must be the null matrix. Now,

Yijpa = 3 Z (Z aps(g~ )(ij)st> a1q(g)

geGt=1

and (Xjj)st = 1 precisely when s =i and t = j giving

Yii)pg = Z api(g~ )a]q(g)
g€G O

G
Corollary 27 Y " a;(g~ )a]](g) ‘n| dij
8€G

Proof. Putp =iand g =
G|

e For i = j, Lemma 24 shows the given sum to have value -

e Fori # j, Lemma 26 shows the given sum to have value 0.

Hence the result. O
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(36.1.6) Characters

Definition 28 Let V be the CG-module associated with the representation : G — GL (, V). The character of the
representation o, Xy, is a function

Xv:G— C definedby xy:gw—trgo
Noting that tr B~1 AB = tr A reveals that xy is independent of basis, and that conjugate elements of G have
the same character: x is a “class function”.

Theorem 29 (Test For Irreducibility) If o (or V) is irreducible then

Y v Hav(g) =G|
8cG

Proof. Calculating as in Section 36.1.5,

Y xvie v =Y tr(g o) trge
g€G g€G

=Y Y Y ai(g Hayi®)

geGi=1j=1

=Y Y ¥ aig Ha(9)

i=1j=1g€G
n n
=Y ) E‘Szj (by Corollary 27)
i—1j=1 "

G| O
This sum may be generalised to YeeG Xv(gfl))(w(g) for non-isomorphic CG-modules V and W (whose
associated representations are not equivalent).

Theorem 30 If V 22 W are irreducible CG-modules for a finite group G then

Y xv(G Hxw(g) =0
g€G

Proof. By a general vector space argument, let 0: G — GL (,V) and 7: G — GL (, W) are irreducible and
not equivalent.

Homeg(V, W) = {¢ € Home(V, W) | (vg)p = (v¢)g Wv € V Vg € G}
Let ¢ € Homcg(V, W) then

e Im ¢ is a submodule of W since certainly it is a subspace and, furthermore, if w = vi then wg =
(vip)g = (vg)y € Im¢.

e ker is a submodule of V since certainly it is a subspace and, furthermore, if vip = 0 then (vg)p =
(vip)g = 0g = 0.

As V and W are irreducible, the only submodules are the improper and trivial ones.

e If Imyp = W then ker ¢ = {0} and ¢ is an isomorphism. But V 2 W and so this cannot be the case.
e IfImy = {0} then kerp = V and ¢ is the zero map.
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Hence Homcg(V, W) = {0}. Letting V have dimension n and W have dimension m and choosing bases,
Homg¢g(C",C™) consists only of the zero matrix. Let g = (4;(g)) and g7 = (b;;(g)) then for any n x m
matrix X

Y. (80) ' X(g7) € Homeg(C",C™)
geG

but this consists only of (0). Using X;; as in Lemma 26 this yields

Y api(g Hbjg(8) =0 Vij,pgq

g€G
in particular Z aii(gfl)bj]-(g) =0
g€G
= Z tr (go_l)trgr
g€G
=Y xv@ Haw(®) m
geG
Thus the following result holds
1 |G| fVeW
Y xv@ Haw(G) = _ (31)
g€G 0 ifVZW

It has already been noted that character is independent of basis by the property of traces that tr B"!AB =

tr A. Also by this relation, equivalent representations give rise to the same trace function.
Theorem 32 There are at most m non-isomorphic irreducible CG-modules, where G has m conjugacy classes.

Proof. Let G€ be the vector space of functions f: G — C, then G is a |G|-dimensional vector space over C

as, for example, a basis is
{fel fe)=1 & x=g}
This can be made into an inner product space by defining

(fi.fo) = Y ig Ha(9)

geG

Consider the subspace of class functions, i.e. those functions which are constant on the conjugacy classes
of G. This subspace includes all the characters of G and if G has m conjugacy classes with representatives
X1,%2,..., Xy then it has basis

{fol1<i<m)

and thus is of dimension m. Now, all the irreducible characters of G are in the subspace of class func-
tions, and for any two irreducible characters of non-isomorphic CG-modules V and W, equation (31) gives
(xv,xw) = 0. But as this is in a space of dimension m there can be at most m different isomorphism types
of CG-module. g

Lemma 33 Let {Vq, Va,..., Vi } be a full set of non-isomorphic irreducible CG-modules with corresponding charac-
ters x;. If V is any CG-module then where forn € N, nV = @ ; V,

V = 1111V1 EBmZVQ@---EanVn
and xy = myx1 + max2 + ... MuXn (34)

1 _
where m; = 11 Y xve Hxi®) (35)
g€G
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Proof. That V can be written as a direct sum of irreducible CG-modules has already been shown in Theorem
19. Choose a basis for V by choosing a basis for V;, extending to a basis of V; @ Vj etc. will make the matrix

of go blockwise diagonal with ith block go;. Hence Equation 34.

Now, to find the multiplicities, simply observe that

1 1 n
@l Y xv(@ Hxi®) = Al Yo Y mixig Hxi(®)
8€G geGj=1

=1 Yo omi Y xi(e Hxi(g)

‘ j=1 geG

Theorem 36 Let V and W be finite-dimensional CG-modules for a finite group G. V and W are isomorphic if and
only if they have the same character, i.e. xy = Xw-

Proof. (=) LetV and W be isomorphicand ¢: G — GL (, V) and 7: G — GL (, W) be representations. As
V and W are isomorphic there exist bases By of V and By of W and an invertible matrix T such that

T'[golp, T = [g7]5,
in which case tr go = tr g7 for all ¢ € G meaning that V and W have the same character.

(«=) Let V and W be CG-modules and xy = x. Then by Lemma 33, xy determines the decomposition
of V into irreducible modules, and ditto xy. But as the characters are equal the decompositions must

be the same and thus V = W. O

This quite remarkable result shows that the traces of the matrices of a representation completely determines

the isomorphism-type of its associated CG-module.

Definition 37 Let x be the character of an irreducible CG-module V. The degree of x is the dimension of V.

Note that for the representation ¢, 150 must be the identity, and so dim V = x(15).

Of particular interest is the regular representation: where V is the complex group algebra CG. Defining the

action of p: G — GL (, CG) as right multiplication by g so that
gr— o0 where o:vi—vg
then p acts to permute the elements of the basis of CG. Thus when v € CG,

v=Y Ax (A€0)
xeG

Now, multiplication by g causes a permutation of the basis, so when

V= ()\Xll/\Xz/'~'//\xn)
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the matrix for gp is a permutation matrix. If ¢ = 1 it is clear that tr gp = |G|. If g # 1 then each element
of G is sent to a different element (for if gh = g then h = 1) and thus tr go = 0. That is

G ifg=1g
Xcg(9) = 0

otherwise

Hence for the irreducible characters yx;
1 -1
(xce xi) = =1 Y xco(@ Oxi(®) = xi(ly)
Gl
8€G
But now by Theorem ?? and Theorem 19
n
CG =P xi1e)V;
i=1
But x;(1g) = dim V; (because for any representation ¢, 10 must be the identity matrix) and so
n

dimCG = |G| = Y (xi(1c))? (38)
i=1

(36.1.7) The Dual Representation

Definition 39 Let 0: G — GL (n, C) be a representation, then define the dual representation to be T: G — GL (n,C)
given by g = ((go)™HT.

Let W be the CG-module associated with a dual representation 7 of a representation . Then

T —

xw(g) = tr((go)~ tr(go) ' = xv(g ™)

where 0 has CG-module V. Now, xy(g) is the sum of the eigenvalues of go

Lemma 40 Let G be a finite group and V be a CG-module. For g € G of order n there is a basis B of V such that [¢]5
is diagonal with entries the nth roots of unity.

Proof. Since g" =1, (g0)" = I. Butif A is an eigenvalue of a matrix A then A” is an eigenvalue of A”. The
eigenvalues of I are just 1, so the eigenvalues of go must be the nth roots of unity.

3 D

Theorem 41 Let 0: G — GL (n,C) be a representation, and T: G — GL (n, C) be the dual representation. If V, W
are the associated CG-modules for o, T respectively then xw(g) = xv(g)-

Proof. If A is an eigenvalue of go, then (g0)v = Av so that %v = (go)~!v. Thus % is an eigenvalue of (go) 1.
But the eigenvalues of go and (g0) " are the same, so since g7 = ((g0)")~!, g7 must have the reciprocal
eigenvalues to go. By Lemma 40 xy(g) is the sum of the nth roots of unity, and these are the eigenvalues of
go. But for roots of unity the reciprocals are the complex conjugates, and since the conjugate of a sum is the

sum of conjugates, xv(g) = xw(g)- -

Corollary 42 Xv(g_l) = xv(g).

Proof. Observe that ¢~ 'c = (¢o)~! then apply Theorem 41. O
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Note that if x is an irreducible character then so is x:

X irreducible < ) x(g Hx(@ =G|

g<G
& ) x@x() = |G|
g€G
& Y x®x@ =Gl
g<G

& yirreducible

(36.2) The Centre Of The Group Algebra

(36.2.1) Basis Of Class Sums

Consider the centre of the group algebra,

Z(CG) = {a € CG | ba = ab Vb € CG}
={aeCG|ag=gaVgeG}
={acCG|glagvg e G}

Now, let a € CG then

a= Z ayx and g lag= Z weg lxg
xeG xeG

thus a € Z(CG) if and only if ay = Rg-1xg
C1,Cy, . ..,C; are the conjugacy classes of G, and a € Z(CG) then

i.e. conjugate elements have the same coefficient. Thus if

a:itxin

i=1 xeC;

Hence the class sums C; = } ¢, x is a basis for Z(CG), which must therefore have dimension equal to the

number of conjugacy classes of G.

(36.2.2) Basis Of Idempotents

Note that an idempotent element x has the property x> = x while a nilpotent element has x" = 0 for some
n € N.

The aim of this section is to find a basis for the centre of the group algebra, this time consisting of idempotent
elements. First of all, a general method is exhibited for finding such a basis.

Theorem 43 Let A be a finite dimensional commutative algebra with a 1 over C and of dimension m. If A contains
no non-zero nilpotent elements then
A=A0A & & An

for 1-dimensional algebras A; with a;a; = 0 forall a; € A;and a; € Aj wheni # j.
Proof. Suppose 0 # e € A and ¢? = e i.e. e is idempotent. Now,

eay +eay = e(ay + az) (ear)(ear) = e*(a1a2)

€A =e(aapy) € A
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So eA is a subalgebra of A. Observing that (1 —e)> = 1 — e so 1 — e is also idempotent shows that (1 — ¢) A
is also a subalgebra of A. Now, forany a € A,

a=1pa=ea+(1—aaceAd(1—e)A

Further,
ea; = (1 —e)ay (ea1)((1 —e)az) = e(1 — e)aya
= ezal =e(l —e)ay = (e2 —e)aijay
= ea=0 =0

so (eA)N((g — e)A) = {0} and (eA)((1 — e)A) = {0}. Thus A = eA D (1 —¢)A.

Now, if A = X® Y (with xy = 0 for all x € X, y € Y) then using induction on the dimension of A gives the
required result. Thus assume that A cannot be written as a direct sum of subalgebras, then the above gives

e = 1. To complete the proof it must be shown that dim¢ A = 1.

For b € A consider
Ty: A— A definedby Ty:a— ab
Let T, have minimum polynomial

p(x) =] J(x—A)™
i=1

then p(Tp) = [T/_; (b — A;14)™ = 0 and is the polynomial of least degree with this property. (Note that
using p in both occasions is a slight abuse of notation.) Thus p(x) =0 < p(b) = 0. Now,

i=1 i=1

r r max; m; ’
[Je-2r10)" =0 = <H(b/\i1A)> =0 = J[-A14=0
i=1

because there are no nilpotent elements in A. As this is formed from the minimum polynomial r is minimal,
so let
By = (b —M14)(b—A2l4)...(0— A 11p)

then by the minimality of #, By # 0. But (b — A;14)B, = 0. Note that cancellation cannot be used to deduce
that (b — A;1,4) = 0 because A is an algebra, not a field. Expanding this,

bB, = A, B, (44)
Using this

B} = (b—M14)(b— Ala)...(b— A,—114)B;
=(b—M12)0 —A214)...(A14 —Ar114)B, by euquation (44)

=Arla —M1a)A1a — A2la) ... (Arlg — Ar—114)B;

Thus Br2 = uyB; for some y, € C. Thus %Br is idempotent and so must be equal to 1,4 (from earlier). But
By(b — A;14) = 0 and therefore b = A;14. As this holds for any b € A, 14 spans A4, i.e. A is 1-dimensional.l]

Corollary 45 The algebra A has a basis of idempotent elements.
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Proof. Write A = A1 ® Ay, ® - - - ® Ay, where A, is an algebra of dimension 1. Then

1A:€1+32+"'+em

_ 2
1A61‘ —67-

with the second line following because for a direct sum of algebras e;e; = 0 fori # j. But 14¢; = ¢; and so A
has a basis of idempotents,
{e1,e2,...,em} 0

Having completed the general theory, it can now be applied to the centre of the group algebra.

Lemma 46 Fora € CG, let

t: CG — C definedby t (Z zxgg) =0y,
8€G

Then t(ax) = 0 for all x € G if and only if a = 0.

Proof. (=) Writea = } ,ccayy. Butforeachy € G, t(ay~1) = 0 and the coefficient of 15 in ay~! is the
coefficient ay of y in a. Thus a, = 0 forally € G,i.e.a = 0.

(<) Obvious. O

Corollary 47 Z(CG) contains no non-zero nilpotent elements.

Proof. Suppose that 0 # z € Z(CG) and z is nilpotent so that z" = 0 for some r. Hence
(Zg)‘rl — an‘ﬂ — Og‘rl — 0

and so zg is nilpotent for all g € G.
Hence where p is the regular representation, tr (zg)p = 0 forall g € G.
Hence t(zg) = 0 for all g € G and so by the preceding Lemma z = 0. Thus Z(CG) contains no nilpotent

elements other than 0. O

Thus by Theorem 43 Z(CG) has a basis of idempotents.

(36.2.3) Number Of Irreducible Submodules

It has already been seen that there are at most m irreducible CG-submodules where G has m conjugacy

classes. The previous section provides the tools to show that there are also at least m.

Theorem 48 There are at least m distinct non-isomorphic irreducible GG-modules, where m is the number of conju-
gacy classes of G.

Proof. Let {e,¢z,...,¢} be a basis of idempotents for Z = Z(CG) with 1cg = e1 + e + - - - +ey. Let V be
an irreducible CG-module, then vl = v for all v € V. Therefore 3i such that ve; # 0, so that Ve; # {0}. But
e; € Zso Ve;is asubmodule of V, and as is is not the trivial submodule, it must be the improper submodule,
so Ve; = V. Thus for each v € V, v = ue; for some u € V. But

ve; = (ue;)e; = uel2 =ue; =v

and so ¢; acts like the identity on V. Similarly, for j # i, ¢; acts like the zero on V.
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As CG is itself a CG-module, CGe; is a CG-submodule for each i. Thus CGe; can be expressed as a direct
sum of irreducible submodules, and so CGe; contains at least 1 irreducible submodule, V; say. From above

e; acts like the identity on V; and for any j # i, ¢; acts like the zero.

But this can be done for each 1 < i < m. For i # j suppose that V; = V;. Then ¢; acts like the identity on V;
but like the zero on V}: a contradiction as any isomorphism must preserve the relationship of elements with

all other elements. Thus there must be at least m non-isomorphic CG-modules. g
Corollary 49 CG has at exactly m non-isomorphic irreducible modules.

Proof. By Theorem 32 there are at most m non-isomorphic irreducible CG-modules, and by Theorem 48

there are at most that many. O

Further, if x1, x2, - - -, xm are the characters of the m irreducible CG-modules then

Y xig Hxj(g) =
|G‘ geG

Also, if F is the complex vector space of class functions of G to C, i.e. functions that are constant on the

conjugacy classes of G, then F is of dimension m and F has an inner product

(fu,f2) = \G| Y A@f(g!

g€G

Hence the irreducible characters form an orthonormal basis of F.

Corollary 50 Let 8: G — C be a class function, then 6 has a unique expression of the form 0 = Y_.I" | a;x; where
a; = (0, xi). Furthermore, 0 is a character of G if and only if (6, x;) € Z for all i.

(36.2.4) Changing Basis

Having found a basis of class sums and a basis of idempotents, it is of interest as to how to change between
them. In particular two very useful orthogonality relations can be deduced in the process.

Theorem 51 C; = i M

e; where x; € C;.
j=1 X](l) 1 ! '

Proof. Write C; = Z;"Zl /\ijej then the task is to find the AI-]-. Let V4, V5,..., Vy; be the irreducible CG-

submodules with corresponding characters x1, x2, ..., xm- ¢; acts like 1 on V; and 0 on V; (i # j) so
xiler) = xi(1) Xjle)) =0

To find an expression for Aj; consider ¢;C;, then
exCi = Ciey = Z Aijejex = Aixeg

As ey acts like 1 on Vi, €,C; acts like C;. Thus

Xk(Ci) = xi(Cier) = xr(Aiker) = Aiexrl(er) = Aiexr(1)
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Choose x; € C; then when 0,: G — End¢ (V) is a representation

Xe(Ci) = tr (Z glng) O

3<G
=[G : Co(xp)|xx(x:)
G = Colx)]x(xi)
hence Aik = T

and hence the result. O

m o xi(Dxi(x; )
Theorem 52 ¢; = Z ihiatihet N
J=RTel

G where xj € C]-.

Proof. Let xcg be the character of the regular representation, then for a chosen class sum Cj

‘G| if1g € Cy
XcG =
0 iflg ¢ G

Hence

xcG(€Cr) = |G| x coefficient of 15 in ¢;Cy

|G| x coefficient of x,:l ine;
B [G : Co(xy)]

(53)

with the last line following because Cy is a sum of [G : Cg(xy)] elements, each of which must have the same

coefficient. Now, also

j
= xi(1e)xi(Cr)
=[G : Colx)]xi(1e)xi(xx) (54)

m
xcc(eiCr) = ) xj(Le)xi(eiCy)
=1

Hence equating equations (53) and (54) and rearranging,

coefficient of x ! in ¢; = Xi(lo)xi(xx)
‘ Gl

and so 1

mxi(Le)xi(x; )

e; = 7C]
&l

Two very useful orthogonality relations can now be deduced by substituting into one of the above two
results using the other.

LA S 6 ot D) = b

Theorem 55 (Row Orthogonality)
|G‘ Xxk(1) i=1
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Proof. Substitute in Theorem 52 for C]- using Theorem 51 then

Xr(x )
()

6=y X |)x1(x’1)2 g+ Col))

o Xi(l)Xi(xfl)Xk(xj)

j=1

But the e; are linearly independent, hence

m Xi(l)Xi(xfl)Xk(xj)

bk =Y,

= 1Celx®)

- |<13\ ifi(é) L, [G + Cobepluity; el -

Note that this result may be extended slightly. As any representative x; of the conjugacy class C; may be
used and characters are class functions,

Z[G Colplxity ) = 3 xig™ (@)
j=1 8eG

By a similar process, another orthogonality relation can be found.

Theorem 56 (Column Orthogonality) Z X](g_l))(]( )=

j= 0 otherwise

{ |Cg(9)|  if g and h are conjugate

Proof. Substituting for ¢ in Theorem 51 using Theorem 52 gives

m G : Cola)]xj(x) o xi(Wxjla )
= C
= TTE) k; Gl

U RO ‘ XY
g (2 G.CG(x])]7|G|

.

But the C; are linearly independent, hence

& xxg Y
k= ) |Ca(x;))|

i=1

which re-arranges to give the required result. O
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(36.2.5) The Feit-Higman Theorem
First of all a calculation.
1[Gz Co(or)]xj(xr) "1G 2 Co(xs)) xe(xs)
C,Cs = G, 1o - 6 W) IXkXs)
(]-Z% x;(1) ‘i ) <k21 xr(1) o
- [G : Co ()| xi(xr)[G CG(XS)]Xi(xr)e,
1 (xi())? l
(6 : ColwlxanG : Colwlton) i D)
(Xi(l))z =1 |G !
- [G : Co(en)]xi(xIG : Co(xs)] xierxilx; ) Cj
i=1 |Glxi(1)

Il

I
—_

Il
™=

1

]
So the coefficient of C jin C,Cs is

|G| i Xi(xr)Xi(xs)Xi(xfl)

CotCotl & 1@ 7)

Note that this can be computed if the character table is known.

Theorem 58 (Feit-Higman) Let G be a finite simple group containing an element t of order 2 and such that |Cg ()| =
4. Then G = As.

Proof. Let1 = X1, X2, ..., Xm be the complex irreducible characters of G. so by Theorem 56 (column orthog-
onality)

1+ Y (M) = |Cat) = 4
i=2

Hence without loss of generality

+1 for2<i<4
xi(t) = _
0 fori >5

Thus the following fragment of the character table has been deduced (where ¢; = £1).

1 t

x1 1 1
X2 X &
X3 Y €
X4 Z &
: 0

for x,y,z € IN. Furthermore, by Theorem 56 (column orthogonality) again,

m
0=Y xiDxi(t) =1+ xes + ye3 + ze4
i=1

which shows that the ¢; are not all of the same sign. Thus choose ¢ = 1and e3 = —1.
It can be shown that if ¢ is an involution (i.e., of order 2) then x(1) — x(t) = 0 mod 4. Using this:
x=1 mod4 y=-1 mod 4 z=¢4 mod 4 xi1)=0 mod4i=>=5

Now, G is not of order 4 since neither Z4 nor V; (the 2 groups of order 4) is simple. Thus Cs(t) is a proper



20 CHAPTER 36. MSM4P4 REPRESENTATION THEORY

subgroup of G. As G is simple Cg(t) ¢ G and therefore G is not abelian because all subgroups of abelian

groups are normal.

Let x; have associated representation 0;: G — GL (n,C). Suppose that i > 1 so that ¢; is not the trivial
representation, then if n = 1 the Homomorphism Theorem gives G = Imo; < C. But C is abelian and G is

not, so all the non-trivial characters must have order of at least 2.

Let C; be the class sum for the conjugacy class of f then by Equation (57) the coefficient of C; in C,C; is
Gl Gup® _IGl ({1 1, &
16 = xi(1) 16 X x oz
|G| 1 1 1
z— |\ I+-—-—-
16 * X oz
611 _ |

163 48 (59)

with the last line following because y > 3 and z > 3 and x can be large without bound.

As C; is the class sum for Clg (t) the coefficient of C, in C,C;, is also the coefficient of t in C,C, when the
class sums are expanded. As the coefficient of f in C; is 1, the coefficient of ¢ in C,C, must be the number of

times t appears as a product of 2 of its conjugates, t = t;t, say. Now,

—1 _ —1,-1
=11t
= t since t is an involution
but then t ™1 = t,14

=t

Hence t1,tp € Cg(t). Now, if either of t| and f, are in fact ¢, then the other is 1.

’ t; and £, are involutions ‘

Hencet; # 1g # trand so t| £ t # tr and so t1,t, € Cg(t) \ {1g,t}. But |Cg(#)| = 4 and there are at most 2
choices for t; as once t; is chosen t, can be determined. Hence the coefficient of ¢ in C,C; is at most 2. Hence
using equation (59)

G

2> —
>48

But

|G|+ |Cs(f)] =0 mod 16
|G|+4=0 mod 16
|G| =12 mod 16
G| € {12,28,44,60,76,92}

Now, for all of these possible orders other than 60 there exists a Sylow p-subgroup for prime p. For example
12 = 3.22 giving p = 3, and 96 = 23.22 giving p = 23. But any such subgroup is normal, and therefore the
only possibility is |G| = 60. O
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(36.3) Groups & Their Characters

(36.3.1) Algebraic Integers & Burnside’s Theorem

Let T, : Z(CG) — Z(CG) be the linear transformation of right multiplication by C,. Now,

€= 116 Cote) X,

SO Cre] Z;[G Co( r)} Xl((l )) €i€j

(r)e
xi(le) ™

=[G : Ca(x)]

hence ¢; is an eigenvector of T, with eigenvalue

xj(xr)

[GC(r)

(60)

But the eigenvalues are the solutions to the characteristic polynomial of the matrix of T, (with respect to the
basis of class sums, say) and without loss of generality this polynomial may be assumed to be monic. Thus

elements (of C) of the form of equation (60) are the roots of such polynomials.
Definition 61 A complex number a is said to be an algebraic integer if w is a root of some monic polynomial in Z[x].
By Gauss’ Lemma « is an algebraic integer if and only if the minimum polynomial of « over Q exists and is
monic in Z[x].
Theorem 62 The following results are available for algebraic integers.

1. a € C is an algebraic integer if and only if Z[«] is finitely generated.

2. A rational algebraic integer is an integer.

Proof. Omitted. O

By considering algebraic integers, some properties of characters can be found.
Lemma 63 A rational algebraic integer is an integer.

Proof. Let « € Q be a rational algebraic integer and have minimum polynomial m(x) over Z. Over Q the
minimum polynomial of « is simply x — & and therefore (over Q) m(x) = (x — a)p(x). By Gauss’ Lemma m
has the same factorisation in Z[x], and so m(x) = x —a i.e., a € Z. (]

Corollary 64 If G is a finite group and x; is an irreducible character of G then the order of x;, x;(1), divides |G|.
Proof. Observe that

IG| = Z (G : Coleplxilepnita; ™)
=

G Xz ) -
LY e comI R e
Xillg j=1 \ ,
alg. int. by eq. (60) sum of roots of unity
But roots of unity are algebraic integers Hence X‘((l; | y is a sum of products of algebraic integers and so is an

algebraic integer. Furthermore, ‘ y € Q and hence by Lemma 63 ‘(G | yEZ d
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Following from this, let o: G — GL (n,C) be an irreducible representation with character x. If ¢ € G has
order m then x(g) is a sum of n mth roots of unity and hence by the triangle inequality |x(g)| < x(1) = n.
Equality holds if and only if x(g) = wx(1) where w is an mth root of unity. In this case go = wl, € Z(Imo).

Theorem 65 (Burnside) Let G be a finite simple group and let x € G\ {1g}. Then [G : Cg(x)] = |Clg (x) | is not a

power of a prime.

Proof. Suppose that [G : Cg(x)] = p'.

Let x1, x2, ..., Xm be the irreducible complex characters of G with x1 being the trivial character. Then by

Theorem 56 (column orthogonality)
m
1+ ) xi(le)xi(x) =0
i=2
m
= E xi(le)xi(x) = —

Z Xl(lG)Xz(x) _71 ¢7Z

hence Ji, 2 < i < m such that w is not an algebraic integer. Therefore

e pixi(lo)

@) — 0 which is an algebraic integer.

o xi(x) # 0. If it were equal to 0 then %

Since [G : Cg(x)] = p" the highest common factor of this and x;(1g) is 1, so there exists integers 4 and b such
that

a[G : Co(®)] +bxi(1g) =1

[G: Cc(x)])(z‘(x)
) T =

but both terms on the left hand side are algebraic integers, and therefore so is the right hand side. Let

Xi(x)
xi(lg)

M={meZ|1<m<o(x),ged(m,o(x) =1}
then for m éM (x) = (x™) and Cg(x) = Cg(x™). Applying the same argument as above,

Xi(x™)
xi(lg)

is an algebraic integer Vin € M

Now, let i > 1 and let o; be the representation that gives character x;. Now, kero; < G and G is simple.
Since 0; is not the trivial character this gives G = Go; = Im ;. But then Go; is simple too, and therefore its

centre is trivial. Hence for no g € G is go; a scalar matrix and so by the comments preceding Theorem 65

x
) < o] = [ K0 <1 (66)
and of course the same holds for x™ for all m € M. Consider the polynomial
New
IT¢- G ey 67)
mem Xilg)

By the above calculations all the coefficients of this polynomial are algebraic integers.



36.3. GROUPS & THEIR CHARACTERS 23

Lets = o(x) and w = exp % xi(x) is a sum of powers of w which are the eigenvalues of the matrix xc;. But

for any matrix X, if A is an eigenvalue of X then A" is an eigenvalue of X" and hence

if xi(x) = w1 +wp+ - +wn

then x;(x™) = wi" + wy' + - - - + wy!

Now, Galois group of the field extension Q(w) : Q consists of all automorphisms of the form 7;,: w — w™

where m € M and thus
- ( Xi(x) ) _ Xix™)
- =
xi(lg) xi(lg)
But the factors of the polynomial given in equation (67) remain the same (only re-ordered) under such

automorphisms, and thus the coefficients of this polynomial are invariant under the action of this Galois
group. But the Galois group has fixed field Q and therefore the coefficients lie in Q. But each is a product
of algebraic integers and so is an algebraic integer. Therefore all the coefficients lie in A. In particular the

constant term is

xi(x™)
imIJM xi(lg) €z

and by equation (66) each term is strictly less than 1. Therefore the whole product is less than 1, and so must
be zero. Hence Im € M such that x;(x™) = 0. But then using the Galois group, x;(x"") = 0 forallm € M. In
particular x;(x) = 0 which contradicts the choice of i. O

Corollary 68 Let G be a finite non-Abelian group with |G| = p®q® where p,q € Z are prime and a,b € N U {0}.

Then G is not simple, and G is solvable.

Proof. Let x1,xy,...,x, be representatives of the conjugacy classes of G with x; = 1. Suppose G is simple,
then |Clg (x1) | =[G : Cg(x1)] = 1 and so

Gl =1+ ) [G: Coxy)] (69)
i=1

Without loss of generality, b > 0 so then q | |G| and g # 1. But then by equation (69) 3i such that 1[G :
Cg(x;)]. But the size of each conjugacy class must divide |G| (Orbit-Stabiliser Theorem) hence

[G: Co(x)]|IG| = [G:Co(x)]|p* = [G:Cq(x;)]|p" forsomer < a
But this contradicts Theorem 65 and therefore G cannot be simple.

To show that G is solvable, proceed by induction on a 4+ b. If 2 + b < 1 then the result follows since G is
either trivial or a p-group. If a + b > 2 then by above G has a non-trivial proper normal subgroup H, and

|H| = p"q° where r +s < a + b and therefore H is solvable with composition series
{16} =Gy,Gy,...,Gp =H

say. Similarly by induction % is solvable with series

Gn Gy G

{1G}IH, H ,...,H -

Tl

say. Hence
{1G} = GlIGZI" -er =H

is a composition series for G i.e., G is solvable. O
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(36.3.2) Characters Of Abelian Groups

Theorem 70 If G is a finite Abelian group then G is isomorphic to a direct product of cyclic groups.

Proof. Omitted. 0

To this end it is useful to work out the irreducible characters of a direct product of groups.

Theorem 71 If G = A X B, x1, X2, .., X1 are the irreducible characters of A, and pq, po, . . ., wm are the irreducible
characters of B then
{xipj |1<i<L1<j<m}

are the irreducible characters of G.
Proof. First of all, observe that each ); may be considered as a character of G with B in its kernel. Similarly
for p;j so that the product x;p; is
Xitj((a, b)) = xi(a)u;(b)
which is indeed a character of G. Taking the inner product of this character with itself,

2
‘G| Z Ixini(@)* = |A|\B| Y ¥ Ixi@)?|pi0)]

acAbeB

(ﬁu L ) ) <|B| r u;(b)F)

=1
Also,

<7cm,-,ws> =Gl LY xinj(g~ Dxrms(®)
g€G

\A|1|B| Y Y xi@ Do Dxr@ps(b)

acAbeB

1
<|A %ZAXI(a )xr(a)> (B| Y nib™ )ys(b)>

= (Xi, Xr) <P‘jr.”5>

{1 ifi=randj=s

0 otherwise

therefore the products x;y; give Im distinct. But since G = A x B G must have Im conjugacy classes, and
therefore these are a full set of irreducible characters of G. O
Let G be a finite Abelian group, then by Theorem 70 G = C; x C; X ... Cs where C; is cyclic of order n;.

Let w; be a primitive n;th root of unity and let C; = (¢;), then for 0 < j < n; — 1 define the character y}i) by

1) = ]

since c; generates C; and the representation is 1-dimensional this extends to give a proper definition of a
character, and indeed of the representation. Since C; is Abelian each element is in a conjugacy class of

its own and hence there are n; conjugacy classes. By calculating the appropriate inner products, the n;
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characters y;i) are the irreducible characters of C;. Hence by Theorem 71 the irreducible characters of G are
precisely

D o< <m—1,0<p<m—1,...,0<js <ns—1}

(36.3.3) Frobenius’ Theorem

The statement of Frobenius’ Theorem is quite straight forward, indeed the result itself is easy to understand.

Unfortunately the proof is a mammoth task.

Theorem 72 (Frobenius) Let G be a finite group and H < G with the property that HN (¢~ Hg) = {1} for all
g € G\ H. Then there exists a normal subgroup of G, K say, such that G = HK and HNK = {15}

Note that K\ {1} = {x € G | no conjugate of x lies in H}.

Proof. Lethy, hy,...,hy berepresentatives of the distinct conjugacy classes of H with iy = 1. Let piq, pto, ...,

be the irreducible characters of H with 1 being the trivial character. Now some preliminaries.

e Choose h; for 2 < i < mand let ¢ € Cg(h). Then h; € H and h; = ¢~ hjc € c~1Hc and therefore
HN(c"'He) # {1}. Hence by hypothesis c € H and so C(h;) C H. But the reverse inclusion holds,

trivially, and thus
Cg(h)) = Cy(hy) Vhe H\{lg} (73)

e Certainly the /; are not H-conjugate, but suppose that 3¢ € G such that h; = ¢ 'h;g. Then hj €
H N (g~ 'Hg) and so by hypothesis ¢ € H which is a contradiction. Hence

If2<i,j,<mthenh;and h j are not G-conjugate (74)

o Next the number of elements of G that aren’t conjugate to any element of H other than the identity are
counted. Well, clearly 1 element of G is conjugate to 1o € H, namely 1. Consider now an element
of G that is G-conjugate to a non-identity element of H. By (74) such an element must be G-conjugate
to precisely one of Iy, I3, . .., hy, h; say. Butby (73) h; has [G : Gg(h;)] = [G : Gi(h;)] conjugates in G.
But

[G: H|[H : Cy(h)] =[G : Cy(hy)]

and therefore the number of elements of G that are conjugate to a non-identity element of H is
m m
[G:H]) [H:Cy(h)] =[G : H] (1 +) [H: CH(hi)})
i=2 i=1
=[G H|(|H|-1)
— G|~ [G: H]

This gives

Exactly [G : H] — 1 elements of G are not conjugate to any element of H \ {15} 75)
Equivalently, if K = {x € G | x = 1 or no conjugate of x lies in H} then |K| = [G : H]

Furthermore, K has the property KN H = {1}

and therefore |HK| = |H||K| = |H|[G : H] = |G| and therefore G = HK‘
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It remains to be shown that K < G. For 2 < i < m define the class function

(o) = ui(g)  if gis G-conjugate tosome h € H\ {1}
l ui(lg) if no conjugate of g liesin H orif g = 15

then by equation (74) this is a well defined function.

Let x1, x2,- - -, x; be the irreducible characters of G, and define ] = xi. It is now shown that the y are the
irreducible characters of G.

o As the ]/tf are class functions of G, they can be expressed as a linear combination of the characters. It
is now shown that the coefficients are integers. Well,

<H?,Xj> = <H? - F?(lc)Xi/Xj> +g1:e(;§2 <Xi;l(]>

Hence it suffices to show that the first term on the right is an integer.

<y7 — U; (1G)X1/X]> |G| Z (15 (9) — 1j (1g)))(](g) but u; () — 1; (1) is zero on Ktext, andso
k [
Z [G : Colxen)](ui (xr) — pi (L) xj(xr)

where x; is G-conjugate to an element of H and x; is not conjugate to an element of the same G-
conjugacy class of x, for v # s.

k
- %' Y16+ Counlutar) ~ 1))

—_
=

e Z [G : Cu(xn))(ui(xr) — pi(1c)x;(xr) by equation (73)

=

= o L U Gl — o)

|y:

—_

Y (ui(h) — wi(le)x;(h)
|H| heH

- <ﬂi — pi(16)H1, Resg (Xf> >H

Now, the first term in the inner product is an integer combination of the irreducible characters of H.
The second term is a character of H

and therefore is an IN-combination of irreducible characters of H. ‘

Thus
<Vi — ui(1)p1, Resf; (Xj) >H €Z
and hence it has been shown that

)
u; = Zz]-)(]- wherez; € Z (76)
j=1
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o The objective is to show that the y} are irreducible, so the following inner product is calculated.

(B 1ie |G| L @

8cG

k
g (2 (1i(1c)) 2 + 2 [G : Colxp)] |pi(xr)] )
=2

g€k

[G H] (P‘z(lc Z [G: CH(xy)] ‘.uz(xr)| by equations (73) and (75)

e IGI

- }ﬂ (06D + g7 X 2 [H : Cra(xn)] 1)

|H| Z |i( h)|

heH
= (i, Bi)y
=1

Hence

(Mini)g=1 (77)

From equations (76) and (77)

and therefore there is exactly one value of j for which 2]2. = 1, and all the other z; are zero. For this j,
ui = £x;. But yj(1g) > 0and x;(1g) > 0, therefore u; = x;. Hence the p} are the irreducible characters of

G. Let l

L= ()kerpy; where kery={geG|x(g =x(lg)}=kero
i=1

then K C L since yj(g) = pi(1g) for all ¢ € K. But L is an intersection of normal subgroups of G and so
LJG.

Now, consider h € HN L. Then since h € L, pj (h) = p}(1¢). Furthermore, since i € H this gives j;(g) =
#i(1g) and therefore

Y wile)pi(h) = Y wile)pi(lc) = |H| >0
i=1 i=1

and thus by Theorem 56 (column orthogonality) /1 is conjugate to 1. Therefore h = 1g andso HNL = {15}

Hence
[~ L JLH_G
“LNnH H S H
Hence |L| < ’%‘ =[G : H] = |K] and therefore since K C L, K =L < G. O

Not surprisingly, Frobenius’ Theorem has a number of uses.

Example 78 Let G be a finite group of order pq where p and q are prime. Then all Sylow p- and g-subgroups are
normal.

Proof. Solution Assume that p > g, let P be a Sylow p-subgroup, and let Q be a Sylow g-subgroup. Consider
Ng(Q). If Ng(Q) = G then Q < G and there is nothing more to show. Assume that Ng(Q) # G. Now,

p=1G:Q] =1G: N(QIINc(Q): Q]
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Since Ng(Q) # G, [G : Ng(Q)] > 1. But p is prime and therefore [G : Ng(Q)] = p. But then [Ng(Q): Q] =1
and so Ng(Q) = Q.

Now, forall g € G\ Q, §7'Qg # Q. But Q has prime order and therefore Q N (g~'Qg) = {15}. Hence by
Frobenius’ Theorem there exists K 4 Gwith KN Q = {15} and G = KQ. By equation (75) [K| =[G : Q] = p
and so K is a Sylow p-subgroup. But all Sylow p-subgroups are conjugate, and so K is the only one. O

(36.3.4) Induced Modules And Characters

Let H < G. From a representation of H it is possible to construct a representation of G. Let [G : H| = n then
the class equation for G is
G=HxjUHx,U---UHxy

where x; is a representative of the ith conjugacy class of H and x; = 1. Note that this is a disjoint union.

Now, for eachi and g € G there is a unique value j such that Hx;g = Hx; ie., xigxfl € H.

Leto: H — GL (m,C) be a representation of H. Construct the function 7: G — GL (mn,C) as follows. For
g € Glet gt be an n x n array of m x m blocks where the (i, j) block is given by

-1 . -1
. x;9x; o ifx;gxit € H
(gr)i;—(xinglo'){ N

0)mxm otherwise

Theorem 79 The function T: G — GL (mn, C) defined in equation (??) is a representation of G.

Proof. Leta,b € G and let a7 have (i, j) block Ajj,
bt be Bjj. Then (at)(b7) has (i, j) block C;j, again an m X m matrix, where

which is an m X m matrix. Similarly let the (i, I) block of

n
Cij = ) AuBy
k=1
n . 1 . 1
= kz (xjax; (7)(xkbxj_ o)
=1

B (xiuxk’la)(xkbxj’la) if x,ux,:l € Hand xkbx}f1 €H
(0)mxm otherwise

But since ¢ is a homomorphism,

(xl-uxk_la)(xkbxj_la) = xiubxj_lo'
and thus C;; = (xiuba.c]fla) which is the (i, j) block of (ab)t.
Now, for any i 3'k such that xiax, le H, and for that k 3!j such that xkbx]._1 € H. Hence for this unique k,
n
Cij = ;AilBlj = AjBy;

and Cj; = (0)mxm forall I # j.

F AN ‘:‘

The representation 7 is called the representation induced from H to G of ¢, Ind%; (¢). Let W be the CH-
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module for ¢. Then where

H=HxiUHxpU---UHxy,
formV=WRx)EeWRxa)® - D(WQRxy,)

where as vector spaces W ® x; = W with w ® x; — w. Now, given any ¢ € G and 1 < i < n there exists a
unique value of j such that x; gx]f1 € H and hence g induces a linear transformation from W ® x; to W ® x;
via

W®x)g = wxigx]?l @ x;
Besides an induced representation and module, there is of course an induced character. In the mn x mn
matrix g7 it is only the n diagonal m x m blocks that will contribute to the character. Suppose that o gives

character y, then

n .
trgT =Y trxgx; o
i=1

I
M:

X(xigx; )

Il
—

—1 . 1
Xi8X; ifx;gx; " € H
where x(x;gx; 1) = {x( i8%; ) i8X;

otherwise

Theorem 80 (Frobenius Reciprocity) Let H < G, let a be a class function of H, and let B be a class function of G.
Then

(nd§; (2),B),_ = {a,Res§y (B)),

Proof. Let G = U, Hx; then

(Indf; (0).8) . = 17 L Indf (@) @@

- ﬁ F® Y g )

g€G i=1

n
= ﬁ Z lgx )ﬁ(ngx
Now, for fixed h € H, hx; is another coset representative of Hx; i.e., Hx; = Hhx; and so

) sz(hx,gx’lh DBhxigx;th=1)

‘GlgEGz

But this can be done for all 1 € H, so adding these together,

|H| <Indg (Dc),ﬁ>c ‘(1;| Z Z Z hxlgxflh 1)[3(hxgx*1h 1y

heH geGi=

‘ | Z 2 Z (hx;gx; 1y 1)ﬁ(hx,gx Ip=1y

geGheHi=
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But over all 1 € H the product hx; takes on all values in Hx;. Then summing over 1 < i < n, hx; takes all

values of G, and hence

1 -
=57 L L gy DBy

‘ | geGyeG

1 -
=5 L gy DBy

Gl (8y)eGXG

ygy '€H

Consider the ordered pairs over which this summation is taken. ¢ must be G-conjugate to some 1 € H, so
ygy~ ' = h say. Hence for this h there are [G : Cg(h)] choices for g. For each such g there is at least 1 choice
for y, but if y; and y, both meet the criteria then

1

vigy: 't =v28y> ' y5'y1 € Co(g)

Since g is conjugate to h, Cg(g) = Cg(h) and so the are |Cg(h)| possible choices for y. Hence there are
|Cc(MIG : Cg(h)] = |G| ordered pairs such that for chosen h € H, ygy~! = h. Hence

1 e —_
o L ety HBlzy D= L a090 = |H] (& Resf; (B)) .
8Y)EGXG heH
ygy 'eH
as required. g

(36.4) Clifford Theory

Continuing the theme of induction from a subgroup, attention is turned to induction from a normal sub-

group. In particular the modules are examined.

Let Gbeagroup and H < G. Let V be a CG-module and let W be a CH-module. Now, as sets V = Resg (V)
but the same is not true for W and Ind$; (W). Referring to Section 36.3.4 W embeds natrularry in Ind$; (W)

in a way which defines a CH-homomorphism i: W — IndIGi (W). The following situation arrises

CG-homomorphisms
Ind§ (W) — RO,y
iT Tidentity
CH-homomorphisms
W SOmOmOPI, ResG (V)

Theorem 81 Let G be a group and H < G. Let V be a CG-module and W be a CH-module. If 6: W —
ResIG{ (V) is a CH-homomorphism and i is the canonical inclusion of W into Indg (W) then there exists a unique
CG-homomoprhism Fy: Ind$, (W) — V such that Foi = 6.

That is to say, the requirement Fy o i = 6 defines Fy uniquely.
Proof. Define a map
Homeg (Indg (W),v) — Homcpy (W, Res$ (V)) by FioFoi (82)

Trivially this is 1-to-1. Now let x be a character of W and ¢ be a character of V. Hence by Theorem 80
(Frobenius Reciprocity)

dim Hom¢g <Indg (W), V> = <Indg (x) ,1/)>G = <X, Res%, (1/J)>H = dim Hom¢y (W, Res% (V)>
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Hence the map defined in equation (82) is also onto. Hence if 8 is any CH-homomorphism there must exist

a unique CG-homomorphism Fy such that Fyoi = 6. O
Definition 83 Let G be a group, H < G, and W be a CH-module. A module induced from H is a pair (X, i) where X

is a CG-module and i: W — X is the inclusion function with the property described in Theorem 81.

Theorem 84 Let G be a group and H < G. If (X, i) and (Y, ) are both CG-modules that are induced from the same
CH-module, W, then X 2 Y.

Simply put, Ind% (W) is unique up to isomorphism.

Proof. Now, in the definition of induced module replace V with X or Y to get

Fx F

X —— Y Yy Y X
1 I i |
w— Res% (Y) w— Res$ (X)

Hence Fx oi = jand Fy o j = i and these functions are unique. But then
j:FXOi:FXOFij
and hence Fx o Fy: X — X is the identity on X. Similarly Fy o Fx is the identity on Y. Hence Fx and Fy are

mutual inverses and so define an isomorphism X = Y. O

Definition 85 Let G be a group, H < G, and let L be a CH-module. For any g € G define L&) to be the CH-module
which is equal to L as a vector space bu has action with H defined by

hxl= (g thg)l
Theorem 86 Let G be a group and H < G. Let M be a CG-module and let L be a CH-submodule of M. Then for any

g € G, gL is also a CH-submodule of M and gL = L®).

Proof. The action of g on L is that of a linear transformation. The image of this must also be a vector space,
and a subspace of M. Hence gL is a subspace of M. To show that gL is also a CH-submodule of M leth € H
and gl € gL. Then

h(gh) = g(s hg)l € gL
because h € H < G. Now for the isomorphism, define a function
¢p: gL —L® by ¢:x— g x
By definition this is a linear map, and trivially it is 1-to-1. Let gl € gL then ¢(gl) = gfl gl =1landso ¢ is
onto.
To complete the proof, ¢ needs to be shown to be a CH-homomorphism,
9(h(gD) = g~ (hg)

= (7 'hg)g 9N

=hxg lgl

= hx¢(gl)

Hence ¢ preserves the action of /1, and thus together with its status as a linear map, this defines ¢ as a

CH-homomorphism, as required. O
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Note that in particular this theorem can be used when L = Resg (M) for some CG-module M.

Theorem 87 (Clifford) Let G be a group and N < G. Let V be an irreducible CG-module. Then Resg (V) is a direct

sum of conjugate irreducible CN-modules.

Proof. Choose any irreducible CN-module W < Res; (V), then for any ¢ € G the CN-module gW is also

irreducible (by Theorem 86 it is isomorphic to a module that is equal to W as a vector space) and so

V=Y W
8eG

is a non-trivial CG-submodule of V. Since V is irreducible this means that

V=Y gW=EgW forsomeX CG
gEG geX

Note that a sum can be made direct by removing appropriate summands. O

Definition 88 Let G be a group and let V be a CG-module. Let L be an irreducible CG-module, then define the

L-homogeneous component of V to be

v = Yy x
X<V
XL

where "X < V" means that X is a CG-submodule of V.

Theorem 89 Let G be a group, V be a CG-module, and N < G. Then G acts on the set of homogeneous components
of V.

Proof. Let W be an irreducible CN-module and let L be the W-homogeneous component of Res]% (V),so

L= ) X

X<Res$ (V)
X=W

Now, ¢X = X8 and since N < G this is again a CN-module. Since V is a CG-module it is closed under
the action of G and as a set Resgj (V) =V, therefore gX C Res%, (V) and from the previous sentence is a

CN-submodule. Hence the following calculation is justified:

gL = Z gX = Z Y

X<Res$ (V) Y<Res§ (V)
X=W YW®
So gL is the W(®) homogeneous component of V. O

Corollary 90 Let V be any CG-module and let N < G.In the decomposition of Resg (V) into irreducible CN-

modules, conjugate irreducible CN-modules appear with the same multiplicity.

Proof. By Theorem 19 (Maschke’s Theorem) write V. = mV; @ mpV, @ - - - ® m, V, for irreducible CG-
modules V;. By Theorem 87,

Res (Vi) = @ sW
geXCG

for some irreducible CN-module W which depends on i (as does X). g

Definition 91 Let G be a group, N < G, and W be an irreducible CN-module. The inertia group of G is the stabiliser
of the action of G on the conjugates of W i.e., {g € G | W& = W},
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Definition 92 Let G be a group, N < G, and V be an irreducible CG-module. V lies over the irreducible C N-module
W if and only if
Homc¢y (W, Res§ (V)> # {0}

Note that by Frobenius reciprocity Homgn (W, Res$ (V)) = Homc¢g (Ind%, w), V).

Theorem 93 Let G be a group, N < G, and W be an irreducible CN-module. Let H be the inertia group for W, then

there is a bijection between CH-modules lying over W and irreducible CG-modules lying over W.
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