
Chapter 19

MSMXA2 Vector Calculus

(19.1) Vector And Scalar Fields

(19.1.1) Index Notation

For the most part of this chapter, two and three dimensional problems will be under consideration. It is
convenient to write, for example

∂Fi
∂xi

=
n

∑
i=1

∂Fi
∂xi

where the actual value of n is implicit by the context.

(19.1.2) Curves In Space

It is ‘obvious’ that a curve in 3 dimensions is a (continuous?) line that form some kind of a shape in R3.

Definition 1 Let [a, b] ⊂ R, then a path in Rn is a map œ : [a, b] → R3. œ(a) and œ(b) are called the endpoints of
the path.

Such a path is normally written in co-ordinate form as

œ = (σ1(t), σ2(t), σ3(t)) for t ∈ [a, b]

If the functions σi are differentiable, then the path œ is said to be differentiable, and the same for continuity.

Definition 2 For a C1 path œ : R → R3 where œ = (x(t), y(t), z(t)), the velocity is v = (x′(t), y′(t), z′(t)), and the
modulus of this is the speed, S = ‖œ′(t)‖.

Note that the velocity vector is a tangent to the path, and its equation at the point t = t0 is

l(s) = œ(t0) + sœ′(t0)

provided œ′(t0) 6= 0.

Definition 3 The length of a path œ is lœ =
∫ b

a
‖œ′(t)‖ dt.

So far, a path has been parameterised by some kind of position in its domain. It can be far more convenient,
however, to parameterise in terms of arc length.

Definition 4 For a path
r(t) = (x(t), y(t), z(t))

1
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the arc length s is defined by
ds
dt

=
∥∥∥∥dr

dt

∥∥∥∥ =
√

ẋ2 + ẏ2 + ż2 (5)

The resulting equation
r(s) = (x(s), y(s), z(s))

is called the intrinsic equation for the curve.

Definition 6 The unit tangent vector T of a curve with intrinsic equation r(s) is the vector

T =
dr
ds

This is in fact always a unit vector. Consider tracing the curve, then the tangent vector is constantly changing

direction, and hence the quantity
dT
ds

is of interest. Now,

T · T = 1 since T is a unit vector

2T · dT
ds

= 0 by differentiating

so the derivative of the tangent vector is perpendicular to the tangent vector T.

Definition 7 Where
dT
ds

= kN, N is the principal unit normal vector, and k is a non-negative function of s which is
called the curvature of œ.

Because N is not necessarily a unit vector, the scaling coefficient k is introduced. The quantity ρ = 1
k is the

radius of curvature.

A tangent vector and a normal vector have now been found. However, since this is 3 dimensions, there
must be another normal vector that is mutually perpendicular to T and N. This is calculated using the cross
product.

Definition 8 The unit binormal vector is defined by the equation

B = T×N

A relationship is now sought between N and B.

Theorem 9 The unit normal vector N and the unit binormal vector B are related by the equation

dB
ds

= −τN

where τ is a function of s called the torsion of the curve.

Proof. From the definition, B = T×N, and so differentiating,

dB
ds

=
dT
ds

×N + T× dN
ds

But dT
ds = kN, so it is parallel to N. Hence the first term is zero, giving

dB
ds

= T× dN
ds

(10)
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Furthermore since B is a unit vector,

B · B = 1 so by differentiating, 2B · dB
ds

= 0

Therefore dB
ds must lie in the plane spanned by T and N, the two perpendicular vectors i.e.

dB
ds

= aT + bN (11)

However, by (10),
dB
ds

is perpendicular to T, so it must be the case that a = 0. Hence putting b = −τ,

dB
ds

= −τN �

The tangent T must always point ‘along’ the curve, but the two normal vectors may rotate round. The
torsion, τ measures the rate (with respect to s) at which the binormal changes direction. For a planar curve
it follows that τ = 0. Notice that

• Since
dT
ds

is parallel to N, and both are unit vectors,

dT
ds

= kN

dT
ds

· dT
ds

= kN · dT
ds∥∥∥∥dT

ds

∥∥∥∥ = k

• Similarly,
∥∥∥∥dB

ds

∥∥∥∥ = −τ.

Recall that for the three unit vectors i, j, and k,

i× j = k j× k = i k× i = j

Now T, N, and B are a right handed set, and since B = T×N it follows that

N = B× T now differentiate,

dN
ds

= B× dT
ds

+
dB
ds

× T

= B× (kN) + (− τN)× T

= −kN× B + τT×N

= −kT + τB

The three equations
dT
ds

= kN
dB
ds

= −τN
dN
ds

= −kT + τB

are called the Serret-Frenet formulae.

Using the chain rule with the definition of arc length, equation (5), it is possible to produce all the above
equations as functions of t rather than s.
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(19.1.3) Fields

Definition 12 A scalar field is a function f : Rn → R.

Definition 13 A vector field is a function F : Rn → Rm.

In few dimensions a scalar field is easy to visualise, an example is a function f : R2 → R which defines a
surface. A vector field is rather more difficult to imagine. Examples of a vector field might be the velocity
of a fluid at different points in a container.

(19.1.4) Differentiation

Definition 14 Let f : Rn → R be a scalar field. The partial derivative of f with respect to xi at the point x =
(x1, x2, . . . , xn) is

∂ f
∂xi

= lim
h→0

f (x1, x2, . . . , xi + h, . . . , xn)− f (x1, x2, . . . , xn)
h

= lim
h→0

f (x + hei)− f (x)
h

where ei is the ith standard basis vector.

If a function f : R → R is differentiable, then it can be approximated locally by a line. Similarly, a scalar field
f : Rn → R is differentiable at a point if it can be approximated locally by an n− 1 dimensional hyperplane.

Definition 15 The scalar field f : Rn → R is differentiable at the point (x10 , x20 , . . . , xn0 ) if all the partial derivatives
with respect to the xi exist, and

f (x)− f (x0)− ∂ f
∂x1

∣∣∣
x0

(x1 − x10 )− · · · − ∂ f
∂xn

∣∣∣
x0

(xn − xn0 )

‖x− x0‖
→ 0

as xi → xi0 for all i.

A vector field may by expressed in the form

F = ( f1 (x1, x2, . . . , xn) , f2 (x1, x2, . . . , xn) , . . . , fm (x1, x2, . . . , xn))

The derivative of such a function is a matrix,

T = D F(x0) =

(
∂ fi
∂xj

)∣∣∣∣∣
x0

Definition 16 If F : Rn → Rm is a vector field then F is differentiable at x0 if all the partial derivatives of each fi exist,
and

lim
x→x0

‖F(x)− F(x0)− T(x− x0)‖
‖x− x0‖

= 0

where

T = D F(x0) =
∂ fi
∂xj

∣∣∣∣∣
x0

The derivative of the vector field is the matrix T. Having calculated the matrix T is is then necessary to check
whether the vector field is indeed differentiable by evaluating the limit given above. There is, however, a
convenient theorem that eliminates this requirements.
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Theorem 17 If F : Rn → Rm is a vector field and if all the partial derivatives
∂ fi
∂xj

exist and are continuous in a

neighbourhood of a point x, then F is differentiable at x.

Properties Of Differentiation

Note that if a result holds for a vector field, then it must hold for a scalar field, which is just the special case
of a vector field when the domain is R.

Theorem 18 Let F and G be vector functions that are differentiable at a point x0 and c ∈ R. Then,

1. D (cF) = c D F.

2. D (F + G) = D F + D G. The sum here is a sum of matrices.

3. For the the special case when F and G are scalar fields, D (FG) = F D G + G D F i.e. the product rule.

4. Again when F and G are scalar fields,

D
F
G

=
G D F− F D G

G2

Where F and G (or F and G) are evaluated at x0.

A version of the chain rule also holds for functions of many variables.

Theorem 19 (The Chain Rule) Let U ⊂ Rn and V ⊂ Rm, and let F : V → Rp and G : U → V be vector fields so
that the composite function F ◦G is defined. If G is differentiable at x0 and F is differentiable at y0 = G(x0), then

D F ◦G(x0) = D F(y0) D G(x0)

Higher order derivatives can be taken in the obvious way, and mixed partials are only equal if the function
is continuously differentiable to the same order as the derivative.

Gradient

Since scalar fields give a singe number, whether this is increasing or decreasing — and how quickly it is
doing so — is a meaningful question. This is not so with vector fields whether the result of the function is a
vector.

Definition 20 Let f be a differentiable scalar field. In three dimensions, the gradient of f at (x, y, z) is the vector

grad f = ∇ f =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)

It is easy to see how to extend this into more dimensions.

The derivative of a scalar field gives how quickly it changes in the direction of differentiation. This is limited
to the the three axes, giving six directions with the careful introductions of ‘minuses’. There are of course a
lot more than six directions, so it is of interest as to how to find the rate of change of the scalar field in any
given direction — the directional derivative.

Theorem 21 The directional derivative of the scalar field f at x0 in the direction of v is given by

∇ f (x0) · v
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Proof. The derivative is being taken along the line x0 + tv, so define the function c(t) = x0 + tv.

f (x0 + tv) = f (c(t))

now differentiating using the chain rule,

d f
dt

= D f ·D c

=
(

∂ f
∂c1

,
∂ f
∂c2

,
∂ f
∂c3

)
· (v1, v2, v3)

=
∂ f
∂c1

v1 +
∂ f
∂c2

v2 +
∂ f
∂c3

v3

= ∇ · v

Hence the result. �

Of course, the function c need not be a straight line — it is quite possible to find the rate of change of a scalar
field along a path in its domain. Returning to the chain rule nd using it on the function f (œ(t)),

d f
dt

= ∇ f (œ(t)) ·œ′(t)

Theorem 22 Provided ∇(x) 6= 0, the gradient vector ∇ f points in the direction in which f is increasing fastest.

Proof. Consider any unit vector n, then n · ∇ f = ‖∇ f ‖ cos θ where θ is the angle between the two vectors.
Clearly the size of this dot product is maximal when θ = 0 i.e. n and ∇ f are parallel. Hence n points in the
direction of maximal gradient only when it is parallel with ∇ f . Hence the result. �

Now, along the level curves of a scalar field its value does not change at all. It follows therefore that the
gradient vector evaluated at a point on a function of the form f (x, y) = c must be normal to the curve.
Furthermore, in three dimensions the gradient vector is normal to the level surface f (x, y, z) = c.

Curl & Divergence

For a vector field, the gradient is a meaningless quantity. Instead it is of interest as to whether the vectors
get bigger or smaller — the divergence — and whether or not they twist like, say, a fluid might — the curl.

Definition 23 Let F be a vector field. The curl of F is defined by

curl F = ∇× F

which is itself a vector field.

In Cartesian co-ordinates this has the obvious representation as a determinant,∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣∣
The cross product definition is of course valid an any co-ordinate system, but it is important to use the
correct form of the vector differential operator, ∇.

As the name implies, the curl has interpretations to do with rotations and twisting.
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If f is a scalar field then notice that ∇ =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)
is a vector field, since it is a function of R3 into R3.

Theorem 24 If F = ∇ f is a vector field, then ∇× (∇ f ) = 0 i.e. the curl of a gradient is zero.

Proof. Writing ∇ f =
(

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

)
simply use the definition to give

∇× (∇ f ) =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

∂ f
∂x

∂ f
∂y

∂ f
∂z

∣∣∣∣∣∣∣∣
=
(

∂2 f
∂y∂z

− ∂2 f
∂z∂y

)
i +
(

∂2 f
∂z∂x

− ∂2 f
∂x∂z

)
j +
(

∂2 f
∂x∂y

− ∂2 f
∂y∂x

)
k

But assuming that f is of class C2 the order of differentiation in mixed partials doesn’t matter, so clearly this
gives the required result. �

As well as how the vector field curls, it is of interest as to whether it ‘expands’ or ‘contracts’, as shown
in Figure 1. In the former case the vector field will map a region in its domain to a ‘larger’ region in its
codomain. This property is the divergence.

Definition 25 Let F = F1i + F2j + F3k be a vector field. The divergence of F is the quantity

D F = ∇ · F =
∂F1
∂x

+
∂F2
∂y

+
∂F3
∂z

which is a scalar field.

����
-�

6

?

A source, ∇ · F > 0

����
- �

6

?

A sink, ∇ · F < 0

Figure 1: Interpretation of divergence

It was noted earlier that the curl of a vector field is itself a vector field.

Theorem 26 For any C2 vector field F, div curl F = 0.

Proof. Use of the relationship a× b · c = a · b× c is not allowed since ∇ is an operator. The result is easy to
show by evaluating directly the equation ∇ · ∇× F with F = F1i + F2j + F3k. �

The property a · b× c = a× b · c is readily shown by evaluating the two triple products. An alternative and
rather unwieldy proof would involve multiplying out the given triple product involving the appropriate
differential fractions. Note that

• a vector field whose divergence is always zero is called divergence free of incomprehensible.

• a vector field whose curl is always zero is called irrotational.
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Notice that curl F is a vector field; this begs the question as to exactly what kind of vector fields can be
expressed as the curl of some other vector field. As it happens, only incomprehensible vector fields can be
expressed as the curl of some other vector field.

Notice that the divergence and curl are linear operators, this follows since the cross and dot product are
linear operators.

Laplacian

Since the gradient of a scalar field is a vector field, what is the divergence of this vector field?

Definition 27 Let f be a scalar field that is twice differentiable. The Laplacian of f is defined as

∇2 f = ∇ · ∇ f = div grad f

In Cartesian co-ordinates this is simply the vector differential operator

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

In some applications, the Laplacian of a vector function may be taken. This is the vector function with the
Laplacian applied to each of the co-ordinates of the original vector function. It can be shown that

∇2F = ∇ (∇ · F)−∇× (∇× F)

Proof of this is made by evaluating the right hand side.

Vector Differential Identities

Theorem 28 For vector fields F, G, and scalar fields H, and f and g,

1. ∇(F ·G) = G(F · ∇) + F(G · ∇) + G× (∇× F) + F× (∇×G)

2. ∇ · ( f F) = f (∇ · F) + F · ∇ f

3. ∇ · (F×G) = G · ∇ × F− F · ∇ ×G

4. ∇× ( f F) = f (∇× F) + (∇ f )× F

5. ∇× (F×G) = F∇ ·G−G∇ · F + (G · ∇)F− (F · ∇)G

6. ∇× (∇× F) = ∇(∇ · F)−∇2F

7. ∇2( f g) = f∇2g + g∇2 f + 2(∇ f · ∇g).

8. ∇ · (∇ f ×∇g) = 0.

9. H · (F×G) = G · (H× F) + F · (G×H)

10. F× (G×H) = (F ·H)G− (F ·G)H

These relations are readily shown from the appropriate definitions. It is at least worth verifying that the
operators are being performed on the appropriate quantities.
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(19.1.5) Orthogonal Co-Ordinate Systems

Cartesian co-ordinates are often the most simple to work in when deriving the assorted results discussed
above. However, when it comes to describing any sort of circular motion, the Cartesian co-ordinate system
is rather poor. Cylindrical and spherical co-ordinates address these problems but unfortunately the vector
calculus results are not as easy.

Changing Co-Ordinate Systems

Suppose that it is desired to change from (x, y, z) co-ordinates to (u, v, w) co-ordinates where

x = f1(u, v, w) y = f2(u, v, w) z = f3(u, v, w)

and suppose that these equations can be solved to produce

u = f 1(x, y, z) v = f 2(x, y, z) w = f 3(x, y, z)

The position vector of a point is then

r = f1(u, v, w)i + f2(u, v, w)j + f3(u, v, w)k

Setting say v and w constant and varying u produces parametric equations which define the u-line. If the
u-line, the v-line, and the w-line are orthogonal, then the co-ordinate system (u, v, w) is called orthogonal.
The unit vectors of this system are the tangents to these lines. Hence the following definition.

Definition 29 Where the position vector of a point is given by

r = f1(u, v, w)i + f2(u, v, w)j + f3(u, v, w)k

define the three unit vectors of the (u, v, w) co-ordinate system by

eu =
1
h1

∂r
∂u

ev =
1
h2

∂r
∂v

ew =
1
h3

∂r
∂w

where
h1 =

∥∥∥∥ ∂r
∂u

∥∥∥∥ h2 =
∥∥∥∥ ∂r

∂v

∥∥∥∥ h3 =
∥∥∥∥ ∂r

∂w

∥∥∥∥
The three h functions are called the structure functions of the co-ordinate system (u, v, w) and their value
may change from point to point.

Having found the unit vectors, it is now of interest as to how to express a point with co-ordinates known in
(x, y, z) in terms of (u, v, w). Say F = F1i + F2j + F3k becomes Fueu + Fvev + Fwew. Now, since the new unit
vectors are orthogonal∗

F · eu = (Fueu + Fvev + Fwew) · eu

= Fu

∗A co-ordinate system doesn’t have to be orthogonal, but it is exceptionally difficult and so quite useless if it isn’t
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but also using eu =
1
h1

(
∂ f1
∂u

i +
∂ f2
∂u

j +
∂ f3
∂u

k
)

,

F · eu = F1i · eu + F2j · eu + F3k · eu

=
1
h1

(
F1

∂ f1
∂u

+ F2
∂ f2
∂u

+ F3
∂ f3
∂u

)
and similarly for the other two co-ordinates.

The vector calculus results can now be converted for use in alternative co-ordinate systems.

Theorem 30 For a scalar field f expressed in an orthogonal co-ordinate system (u, v, w), the vector differential opera-
tor ∇ becomes

∇ = eu
1
h1

∂

∂u
+ ev

1
h2

∂

∂v
+ ew

1
h3

∂

∂w
Proof. For a scalar field f (x, y, z) = g(u, v, w), working from the definition of ∇,

∇ f =
∂ f
∂x

i +
∂ f
∂y

j +
∂ f
∂z

k

which is to be expressed in the form

= Gueu + Gvev + Gwew

where the Gs are to be determined. Now, from above

Gu =
1
h1

(
∂ f
∂x

∂x
∂u

+
∂ f
∂y

∂y
∂u

+
∂ f
∂z

∂z
∂u

)
=

1
h1

∂ f
∂u

and similarly for Gv and Gw. Hence

∇ f = eu
1
h1

∂ f
∂u

+ ev
1
h2

∂ f
∂v

+ ew
1
h3

∂ f
∂w

As required. �

Notice that the unit vector is not differentiated, even though it will probably depend on the variables.

Applying this result it is easily deduced that

eu = h1∇u ev = h2∇v ew = h3∇w

But u, v, and w are functions of x, y, and z; from earlier u = f (x, y, z). For constant u this defines a surface,
and ∇u gives a normal vector to this surface. The unit vectors could therefore be defined as normals to
these surfaces.

Having found how to change co-ordinate systems, it is now of interest as to what the usual vector differential
operators become in alternative co-ordinate systems.

The Divergence

It would at first seem that finding the divergence is simply a case of applying the differential operator found
in Theorem 30 to Definition 25. However, this is not the case, as this would not include in the differentiation
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process the basis vectors. This must be done since they are themselves functions of (u, v, w).

Beginning with Definition 25,

∇ · F = ∇ · (Fueu + Fvev + Fww) = ∇ · Fueu +∇ · Fvev +∇ · Fwew

Consider ∇ · Fueu—the other terms will follow by symmetry—then use eu = h1∇u.

∇ · Fueu = ∇ · (Fuh1∇u)

= ∇ · (Fu (h2∇v× h3∇w)) since eu = ev × ew

= ∇ ·
(

Fuh2h3︸ ︷︷ ︸ “ f ”∇v×∇w︸ ︷︷ ︸ “F”
)

now use identity 2 from page 8,

= (Fuh2h3)∇ · (∇v×∇w) + (∇v×∇w) · ∇ (Fuh2h3)

but by identity 8 the first term is zero, hence

= (∇v×∇w)∇ · (Fuh2h3)

=
1

h2h3
eu∇ · (Fuh2h3)

=
1

h2h3
eu ·

(
eu

1
h1

∂

∂u
(Fuh2h3) + ev

1
h2

∂

∂v
(Fuh2h3) + ew

1
h3

∂

∂w
(Fuh2h3)

)
=

1
h1h2h3

∂

∂u
(Fuh2h3)

and so by symmetry it is clear that the divergence is given by the formula

∇ · F =
1

h1h2h3

(
∂

∂u
(h2h3Fu) +

∂

∂v
(h1h3Fv) +

∂

∂w
(h1h2Fw)

)

An alternative proof would involve starting with the Cartesian result ∇ · F =
∂F1
∂x

+
∂F2
∂y

+
∂F3
∂z

and treat Fi

as a composite function then use the chain rule. However, this is a rather lengthy method so it is preferable
to memorise the vector differential identities.

The Curl

As with the divergence, the calculations are hampered by having to consider the basis vectors as functions.
Nevertheless, direct contact with this can be ‘hidden’ using the vector differential identities.

Beginning with the definition of curl,

∇× F = ∇× (Fueu + Fvev + Fwew) = ∇× (Fueu) +∇× (Fvev) +∇× (Fwew)
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considering only ∇× (Fueu) since the other tems will follow by symmetry,

∇× (Fueu) = ∇×
(

h1Fu︸︷︷︸ “ f ” ∇u︸︷︷︸ “F”
)

now use identity 4

= ∇ (h1Fu)×∇u + (h1Fu)∇× (∇u)

= ∇ (h1Fu)×∇u since the curl of a gradient is the zero vector

=
(

eu
1
h1

∂

∂u
(h1Fu) + ev

1
h2

∂

∂v
(h1Fu) + ew

1
h3

∂

∂w
(h1Fu)

)
× eu

1
h1

=

∣∣∣∣∣∣∣∣
eu ev ew

1
h1

∂
∂u (h1Fu) 1

h2

∂
∂v (h1Fu) 1

h3

∂
∂w (h1Fu)

1
h1

0 0

∣∣∣∣∣∣∣∣ =
1

h1h2h3

∣∣∣∣∣∣∣
h1eu h2ev h3ew

∂
∂u

∂
∂v

∂
∂w

h1Fu 0 0

∣∣∣∣∣∣∣
similarly ∇× (Fvev) =

1
h1h2h3

∣∣∣∣∣∣∣
h1eu h2ev h3ew

∂
∂u

∂
∂v

∂
∂w

0 h2Fv 0

∣∣∣∣∣∣∣
and ∇× (Fwew) =

1
h1h2h3

∣∣∣∣∣∣∣
h1eu h2ev h3ew

∂
∂u

∂
∂v

∂
∂w

0 0 h3Fw

∣∣∣∣∣∣∣
By summing these last three equations the result follows

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣
h1eu h2ev h3ew

∂
∂u

∂
∂v

∂
∂w

h1Fu h2Fv h3Fw

∣∣∣∣∣∣∣
The Laplacian

Finally, the fourth vector differential operator. The Laplacian is the divergence of the vector field formed by
taking the del of a scalar field i.e. ∇2 f = ∇ · (∇ f ).

Working directly from the definition,

∇2 f = ∇ · (∇ f )

= ∇ ·
(

eu
1
h1

∂ f
∂u

+ ev
1
h2

∂ f
∂v

+ ew
1
h3

∂ f
∂w

)

Now use the result for the divergence

=
1

h1h2h3

(
∂

∂u

(
h2h3
h1

∂ f
∂u

)
+

∂

∂v

(
h1h3
h2

∂ f
∂v

)
+

∂

∂w

(
h1h2
h3

∂ f
∂w

))
This cannot be simplified further, so is the expression for the Laplacian. The f s may be removed giving an
operator notation.

Cylindrical Polar Co-ordinates

Having produced a variety of results in general it important to see how they are applied to the two most
important alternative orthogonal co-ordinate systems—cylindrical and spherical polar co-ordinates.
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In Cylindrical polar co-ordinates

x = r cos θ y = r sin θ z = z

so that
r = r cos θi + r sin θj + zk

from which it is readily seen that

h1 =
∥∥∥∥ ∂r

∂r

∥∥∥∥ = 1 h2 =
∥∥∥∥ ∂r

∂θ

∥∥∥∥ = r h3 =
∥∥∥∥ ∂r

∂z

∥∥∥∥ = 1

and hence

er =
1
h1

∂r
∂r

eθ =
1
h2

∂r
∂θ

ez =
1
h3

∂r
∂z

=
∂r
∂r

=
1
r

∂r
∂θ

=
∂r
∂z

= cos θi + sin θj = − sin θi + cos θj = zk

The results found above can be substituted into the various expressions for the differential operators and it
is found that

∇ = er
∂

∂r
+

1
r

eθ
∂

∂θ
+ ez

∂

∂z

∇ · F =
1
r

(
∂

∂r
(rFr) +

∂

∂θ
(Fθ) + r

∂

∂z
(Fz)

)

∇× F =
1
r

∣∣∣∣∣∣∣
er reθ ez
∂
∂r

∂
∂θ

∂
∂z

Fr rFθ Fz

∣∣∣∣∣∣∣
∇2 f =

1
r

∂

∂u

(
r

∂ f
∂u

)
+

1
r2

∂2 f
∂v2 +

∂2 f
∂z2

Spherical Polar Co-ordinates

The calculations run according in a similar way to those for cylindrical polar co-ordinates, except for requir-
ing slightly more algebra—and more care. The results, though, are really quite straight forward and are set
out below.

x = r sin φ cos θ y = r sin φ sin θ z = r cos φ

giving
h1 = 1 h2 = r sin φ h3 = r

hence the unit vectors are

er = sin φ cos θi + sin φ sin θj + cos φk

eθ = − sin θi + cos θj

eφ = cos φ cos θi + cos φ sin θj− sin φk
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From the results collected above, it is simple to substitute into the expressions for the various differential
operators and produce the following.

∇ f = er
∂ f
∂r

+ eθ
1

r sin φ

∂ f
∂θ

+ eφ
1
r

∂ f
∂φ

∇ · F =
1

r2 sin φ

(
∂

∂r

(
r2 sin φFr

)
+

∂

∂θ
(rFθ) +

∂

∂φ

(
r sin φ Fφ

))

∇× F =
1

r2 sin φ

∣∣∣∣∣∣∣∣
er r sin φeθ reφ
∂
∂r

∂
∂θ

∂
∂φ

Fr r sin φFθ rFφ

∣∣∣∣∣∣∣∣
∇2 f =

1
r2

∂

∂r

(
r2 ∂ f

∂r

)
+

1
r2 sin2 φ

∂2 f
∂θ2 +

1
r2 sin φ

∂

∂φ

(
sin φ

∂ f
∂φ

)

(19.2) Integration

(19.2.1) Multiple Integrals

The multiple integral provides a way of integrating a scalar field over some subset of its domain. Their
evaluation is discussed in Chapter ??.

(19.2.2) Path & Line Integrals

Definition 31 Let f : R3 → R be a scalar field, and œ : [a, b] → R3 where [a, b] ⊂ R be a path of class C1, then

∫
œ

f ds =
∫ b

a
f (œ(t)) ‖œ′(t)‖ dt

where œ = (x(t), y(t), z(t)). This is the path integral of f along œ.

It is important to remember the path integral is evaluated with respect to arc length, and since
ds
dt

=
∥∥∥∥dœ

dt

∥∥∥∥
the factor ‖œ′‖ is introduced to change the variables. Also, the expression f (œ) is meaningful since œ : R →
R3.

The path integral has many practical uses, since if œ is the shape if a wire, then integrating the scalar field
f = 1 will find its length. Alternatively, f may be a density function so that the mass will be found.

The path integral can be defined in terms of a Riemann sum, taking the value of f on small segments of the
path, i.e. ∆s.

Path integrals are not applicable to vector fields, since the formulation of the integral is meaningless. Instead
the line integral is defined as follows.

Definition 32 Let F : R3 → R3 be a vector field, and œ : [a, b] → R3 be a path of class C1, then

∫
œ

F · ds =
∫ b

a
F (œ(t)) ·œ′(t) dt

Again there are practical interpretations of the line integral, not least one of “force times distance” — some-
thing any GCSE student will claim to be “work”. If the direction of the force is always perpendicular to the
direction of travel, then the integral must evaluate to zero. Resolving the force parallel and perpendicular
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to the line, it is evident that ∫
œ

F · ds =
∫ b

a
(F (œ(t)) · T(t))

∥∥œ′(t)
∥∥ dt

where T is the unit tangent vector along the path œ. Note there is no perpendicular component since it is
zero.

Consider a vector field as the force provided by the current of a river, and the path being the river. Traveling
on the river in the direction of flow will be easy, since the force of the current will provide energy to move a
boat. However, in the other direction the same energy is needed to counter the current and so stay still, and
the same again to move at the same speed up the river.
It is plausible, therefore, that a line integral evaluated along a path œ : [a, b] → R3 should not be equal
to, and in fact should have −1 times the value of the same line integral evaluated along œ : [b, a] → R3.
This dependence on the direction of the path means the line integral is an oriented integral. If œ is a path
described from a point a to a point b, and æ is the same path described from b to a, then∫

œ
F · ds = −

∫
æ

F · ds

The path æ is said to have the reverse orientation as œ.

The idea of direction being reversed is difficult to express mathematically in terms of œ and æ. However, it
is readily seen that œ′(t) = −æ′(t) i.e. the tangent vectors have opposite sense. Looking at the line integral
formula and path integral formula — Definitions 32 and 31 respectively — it is clear why the line integral is
oriented but the path integral is not.

The purpose of a path is to provide a set of points in space. The domain (in R) of the path is not particularly
important, and indeed the domain of the path can be changed, provided that it describes the same set of
points in R3. Such a change is called a reparameterisation.

Definition 33 Let h : R → R be a C1 bijection that maps an interval [a, b] to an interval [c, d]. If œ : [a, b] → R3 is
a piecewise C1 path, then æ = œ ◦ h is a reparameterisation of œ.

A reparameterisation may preserve the direction of a path, or change it,

• If h(a) = c and h(b) = d, then the reparameterisation is orientation preserving.

• If h(a) = d and h(b) = c, then the reparameterisation is orientation reversing.

The possibility of the value of an integral changing sign is quite worrying, as the value of an integral is
nolonger a well-defined quantity. Indeed, who is to say that it could not take even more values given
some suitable reparameterisation. Although it seems quite trivial, the following theorem is, therefore, very
important.

Theorem 34 If œ and æ are parameterisations of the same curve, then for a vector field F,∫
œ

F · ds = ±
∫

æ
F · ds

where the direction is chosen according to whether the reparameterisation æ is orientation preserving or reversing
respectively.
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Proof. Working from the definition of the line integral,

∫
æ

F · ds =
∫ b

a
F(æ) ·æ′(t) dt

=
∫ b

a
F(œ(h(t))) · dœ(h(t))

dt
dt

=
∫ b

a
F(œ(g(t))) · dœ(h(t))

dh(t)
dh(t)

dt
dt from the chain rule

=
∫ h(b)

h(a)
F(œ(h(t))) · dœ(h)

dh
dh by changing variables (35)

The two cases of the reparameterisation being orientation preserving and orientation reversing are now
considered in turn.

(a) If the reparameterisation is order preserving then h(a) = c and h(b) = d. Hence equation (35) becomes

∫
æ

F · ds =
∫ d

c
F(œ(p)) ·œ′(p) dp =

∫
œ

F · ds

Hence the signs are the same.

(b) If the reparameterisation is order reversing then h(a) = d and h(b) = c. Hence equation (35) becomes

∫
æ

F · ds =
∫ c

d
F(œ(p)) ·œ′(p) dp = −

∫ d

c
F(œ(p)) ·œ′(p) dp = −

∫
œ

F · ds

Hence the signs are changed.

Since a reparameterisation can only be orientation preserving or orientation reversing the possible cases are
exhausted and hence the theorem is proved. �

(19.2.3) Surface Integrals

The path and line integrals effectively reduce a three dimensional problem to one dimension, allowing inte-
gration over one variable. Surface integrals parameterise in two variables and so require double integration.
In the same way that a path integral finds a length, the surface area of a scalar field finds area.

Definition 36 A parameterised surface is a function : R2 → R3 expressed in the form

(u, v) = (x(u, v), y(u, x), z(u, v))

With the line and path integrals the use of a tangent line was required, however, a surface has a tangent
plane. It is easy to see that tangent lines in the u and v directions at a point (u0, v0) are given by

Tu =
∂x
∂u

∣∣∣∣
(u0,v0)

i +
∂y
∂u

∣∣∣∣
(u0,v0)

j +
∂z
∂u

∣∣∣∣
(u0,v0)

k

Tv =
∂x
∂v

∣∣∣∣
(u0,v0)

i +
∂y
∂v

∣∣∣∣
(u0,v0)

j +
∂z
∂v

∣∣∣∣
(u0,v0)

k

Since it is assumed that an orthogonal co-ordinate system is used, and since the surface is sufficiently smooth
and ‘well behaved’ these two vectors span the tangent plane. A normal vector to the surface at the point
(u0, v0) can therefore be found by taking the cross product n = Tu × Tv. Indeed, if this is nonzero then the
surface is said to be smooth at (u0, v0).
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Definition 37 The integral of a scalar field f over a surface S which is parameterised by : D → R3 where D ⊂ R2

is given by ∫
S

f (x, y, z) dS =
∫

D
f ( (u, v))‖Tu × Tv‖ du dv

Note that if f is the scalar field f (r) = 1 then the surface integral finds the area of the surface.

As line integrals are oriented, so are surface integrals of vector fields; the orientation of a plane is therefore
of concern. Clearly a plane has two sides, one will be defined as the positive side or outside and the other
as the negative side or inside. Notice that when dealing with closed shapes such as a sphere, the outside is
the positive side. Again by analogy to the line integral,

• If
Tu × Tv

‖Tu × Tv‖
= n1(P) where P is the point on the surface, then the parameterisation is orientation

preserving.

• If
Tu × Tv

‖Tu × Tv‖
= −n1(P) where P is the point on the surface, then the parameterisation is orientation

reversing.

However, not all surfaces are covered by these conditions: There are surfaces with only one side such as the
Möbius strip, though this is usually of negligible concern.

There is a subtle difference between using the normal vector n and the unit normal vector n1. The objective
of introducing the normal vector is to change “·dS” to “ du dv”. This gives∫

S
F · dS =

∫
S

F · n1 dS =
∫

D
F · n du dv

Obviously the surface integral of a scalar field is independent of whether the parameterisation of the surface
is orientation preserving ore reversing. Clearly this is not so with the surface integral of a vector field.

Theorem 38 If S is a surface and 1 and 2 are two smooth parameterisations of S then

(i) If 1 and 2 are orientation preserving then
∫

1

F · dS =
∫

2

F · dS.

(ii) If 1 and 2 are orientation reversing then
∫

1

F · dS = −
∫

2

F · dS.

(19.2.4) Integral Theorems

Domains, Surfaces & Volumes

In the previous section integrals were defined over volumes (the familiar triple integral), over surfaces
(the surface integral which boils down to double integration), and along lines (which reduces to single
integration). Clearly some of these integrals are easier to evaluate than others: The integral theorems of
vector calculus provide ways to change between the various types of integral and can simplify immensely
the process of integration. Note that ‘V’ is used for volumes, and ‘S’ for surfaces. ‘D’ represents a ‘domain’,
usually in two dimensions corresponding to the surface integral can be performed as an iterated double
integral.

The Divergence Theorem

Also known as Gausss Theorem, the Divergence Theorem links surface integrals with volume integrals. To
be precise it links a volume integral to a surface integral over the bounding surface of the volume.
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Theorem 39 (The Divergence Theorem) Let S be a closed surface which bounds a volume V. If F is a vector field
which is of class C1 on both V and S then ∫

V
∇ · F dV =

∫
S

F · n dS

where n is the outward pointing normal vector to the surface S.

Proof. Suppose the volume under consideration is bounded by two surfaces h1 and h2 which are functions
h : D → R where D ⊂ R2. The volume is therefore given by

V = {(x, y, z) | (x, y) ∈ D, h1(x, y) 6 z 6 h2(x, y)}

Hence evaluating the third component of the volume integral,

∫
V

∂F3
∂z

dz =
∫

(x,y)∈D

∫ h2

h1

∂F3
∂z

dz dx dy

=
∫

D
F3 (x, y, h2(x, y))− F3 (x, y, h1(x, y)) dx dy (40)

Consider now the surface integral. Where n = n1i + n2j + n3k the integral becomes∫
S

F1n1 + F2n2 + F3n3 dS

So that the surface is a proper function, it is thought of as two parts, the upper part and the lower part. This
ensures that each point in the domain only maps to one point rather than two. Since the z component is
under consideration at present, z is taken to be a function of x and y. However, when the other components
are considered it will be necessary to move from the xy plane to the xz or yz plane. The task now is to find
the normal vector. Consider the parameterisation of the upper part of the surface,

rU = xi + yj + h2(x, y)k

rL = xi + yj + h1(x, y)k

By taking the cross product of the tangent vectors it is evident that

nU = ±
∂rU
∂x × ∂rU

∂y∥∥∥ ∂rU
∂x × ∂rU

∂y

∥∥∥
Now,

∂rU
∂x

= i +
∂h2
∂x

k and
∂rU
∂y

= j +
∂h2
∂y

k. Hence

= ±

 −h2x√
1 + h2

2x + h2
2y

i +
−h2y√

1 + h2
2x + h2

2y

j +
1√

1 + h2
2x + h2

2y

k


=

−h2x√
1 + h2

2x + h2
2y

i +
−h2y√

1 + h2
2x + h2

2y

j +
1√

1 + h2
2x + h2

2y

k

The last line follows because the normal vector is required to point outward, which in this case is ‘up’. It is
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now necessary to change from integrating with respect to S to x and y. Now,

·dSU = nU dSU By splitting S into a unit vector and scalar

= nU

∥∥∥∥ ∂rU
∂x

× ∂rU
∂y

∥∥∥∥ dx dy

Since the area of the surface element dS is the cross product of the tangent vectors.

=
(
−h2xi + h2yj + k

)
so k · dSU = dx dy

Similarly for the lower part of the surface,

nL =
−h1x√

1 + h2
1x + h2

2y

i +
−h1y√

1 + h2
1x + h2

1y

j +
1√

1 + h2
1x + h2

1y

k

from which it follows that k · dSL = − dx dy. Using these results,∫
S

F3k · dS =
∫

SU

F3k · dSU +
∫

SL

F3k · dSL

=
∫

SU

F3 dx dy−
∫

SL

F3 dx dy

=
∫

D
F3 (x, y, h2(x, y))− F3 (x, y, h1(x, y)) dx dy

=
∫

V

∂F3
∂z

dV

Comparing to (40), this has shown that the theorem holds for the z components, since manipulating both
sides has produced the same expression. The process is now repeated for the other two components.

Where
V = {(x, y, z) | (x, z) ∈ D1, g1(x, z) 6 y 6 g2(x, z)}

it follows through that ∫
V

∂F2
∂y

dV =
∫

S
F2j · dS

And similarly where
V = {(x, y, z) | (y, z) ∈ D2, f1(y, z) 6 y 6 f2(y, z)}

it follows through that ∫
V

∂F1
∂x

dV =
∫

S
F1i · dS

Summing these components,

∫
V

∂F1
∂x

+
∂F2
∂y

+
∂F3
∂z

dV =
∫

S
(F1i + F2j + F3k) · dS∫

V
∇ · F dV =

∫
S

F · dS

Hence the result. �
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Green’s Theorems

Green’s theorems are of rather less direct use than the divergence theorem. They both convert a surface
integral to a volume integral.

Theorem 41 (Green’s First Theorem) Let f and g be scalar fields with ∇2 f and ∇2g being defined throughout some
volume V which is bounded by a simple closed surface S. If any discontinuities in ∇2 f and ∇2g are finite and are
confined to finitely many simple surfaces in V then∫

S
f∇g · n dS =

∫
V

f∇2g +∇ f · ∇g dV

This is sometimes written as ∫
S

f
∂g
∂n

dS =
∫

V
f∇2g +∇ f · ∇g dV

where n is the outward unit normal vector of S.

Proof. From vector identity 2 on page 8, ∇( f F) = f (∇ · F) + F · ∇ f . Applying this to H = f∇g,

∇ ·H = f∇ · (∇g) +∇ f · ∇g = f∇2g +∇ f · ∇g

Now applying the divergence theorem to H,∫
S

f∇g · n dS =
∫

S
H · dS

=
∫

V
∇ ·H dV

=
∫

V
f∇2g +∇g · ∇g dV

=
∫

V
f∇2g +∇g · ∇g dV

Hence the result. �

Theorem 42 (Green’s Second Theorem) Let f and g be scalar fields with ∇2 f and ∇2g being defined throughout
some volume V which is bounded by a simple closed surface S. If any discontinuities in ∇2 f and ∇2g are finite and
are confined to finitely many simple surfaces in V then

∫
S

f n · ∇g− gn · ∇ f dS =
∫

S
f

∂g
∂n

− g
∂ f
∂n

dS =
∫

V
f∇2g− g∇2 f dV

where n is the outward unit normal vector to S.

Proof. From Green’s first theorem, ∫
S

f
∂g
∂n

dS =
∫

V
f∇2g +∇ f · ∇g dV

and
∫

S
g

∂ f
∂n

dS =
∫

V
g∇2 f +∇g · ∇ f dV

Subtracting these two results gives

∫
S

f
∂g
∂n

− g
∂ f
∂n

dS =
∫

V
f∇2g− g∇2 f dV

Which proves the theorem. �

The uses of Green’s theorems are less obvious than those of the divergence theorem. However, one possible
application is given in the example below.
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Example 43 Show that solutions to ∇2u = 0 are unique on a domain D where u = f on the boundary of D, ∂D.

Proof. Solution Suppose that u and v are two solutions on D. Then ∇2u = ∇2v = 0. Since the Laplacian is
a linear operator this gives ∇2(u− v) = 0.
By hypothesis u = v = f on the surface S, the boundary of D. Hence u− v has value 0 on S. Let w = u− v
and now apply Green’s theorem. ∫

S
w∇w · dS =

∫
V
∇2w +∇w · ∇w dV

But w = 0 on S and ∇2w = 0 so

0 =
∫

V
∇w · ∇w dV

=
∫

V
‖∇w‖2 dV

Now, ‖∇w‖2 > 0 so
∫

V ‖∇w‖2 dV = 0 ⇔ ‖∇w‖2 = 0 which means that w is a constant.
Hence w = 0 on the boundary of D and w is a constant. Hence w = 0 i.e. u − v = 0 so u is unique, as
required. �

Stokes’ Theorem

Stokes’ theorem takes a similar form to the divergence theorem, but it connects line integrals to surface
integrals. Lines and surfaces both being oriented quantities, it is important to define the correct orientation
for the theorem.

Definition 44 Let C be a closed curve, and S be a surface which is bounded by C. C and S are correspondingly oriented
if S is on the left when C is traversed in an anticlockwise direction.

Lemma 45 (Green’s Theorem In The Plane) Let H = H1(x, y)i + H2(x, y)j be a planar vector field having a contin-
uous derivative in some region R. If the curve C is correspondingly oriented to, and bounds R, then

∫
C

H · ds =
∫∫

R

∂H2
∂x

− ∂H1
∂y

dx dy

Proof. Suppose that C is simple so that any line intersects it only twice (so it looks a bit like a circle). Suppose
also that R is a region in the xy plane such that

R = {(x, y) | a 6 x 6 b h1(x) 6 y 6 h2(x)}

so that C can be expressed as

CL : rL = xi + h1(x)j a 6 x 6 b

CU : rU = (b + a− x)i + h2(b + a− x)j a 6 x 6 b

Note that the curve is parameterised so that it is traversed anticlockwise, so CL is first. The situation is
shown diagrammatically in Figure 12.
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6

-

&%
'$CU

CL

a b

R

Figure 2: Simple representation of situation in Lemma 45.

Integrating over R,

∫∫
R

∂H1
∂y

dx dy =
∫ b

a

∫ h2

h1

∂H1
∂y

dy dx

=
∫ b

a
H1(x, h2(x))− H1(x, h1(x)) dx (46)

Now,
drL
dx

= i + h′1j
drU
dx

= −i− h′2j

This gives

∫
CU

H1i · ds =
∫ b

a
H1(CU) · (− i− h′2j) dx

∫
CL

H1i · ds =
∫

CL

H1(CL) · (i + h′1j) dx

= −
∫ b

a
H1(x, h2(x)) dx =

∫ b

a
H1(x, h1(x)) dx

Using these in equation (46) gives

∫ b

a
H1(x, h2(x))− H1(x, h1(x)) dx = −

∫
CU

H1i · ds−
∫

CL

H1i · ds = −
∫

C
H1i · ds

Hence ∫∫
R

∂H1
∂y

dx dy = −
∫

C
H1i · ds (47)

Now consider

R = {(x, y) | c 6 y 6 d g1(y) 6 x 6 g2(y)}

so that C can be expressed as

Cl : rl = g2(y)i + yj c 6 y 6 d

Cr : rr = g1(c + d− y)i + (c + d− y)j a 6 x 6 b

In the same way as above it is found that

∫∫
R

∂H2
∂x

dx dy =
∫

C
H2j · ds (48)

Subtracting equation (47) from (48) produces the result

∫∫
R

∂H2
∂x

− ∂H1
∂y

dx dy =
∫

C
(H1i− H2j) · ds =

∫
C

H · ds
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as required.

Now, in the case where part of C is parallel to one of the axes, it may be parameterised into a third part CP,
the part parallel to an axis. Now,

• If CP is parallel to the y axis, then its parameterisation will have a constant i component. Hence the
value of

∫
C H1i · ds does not change and the result still holds.

• If CP is parallel to the x axis, then its parameterisation will have constant j component. Hence the
value of

∫
C H2j · ds does not change and the result still holds.

Note that a horizontal part does not effect the calculation with H1i because it is part of the h1 function. The
problem arises if there is a vertical part between where h1 and h2 should meet.

The results still hold, so the Lemma is proved. �

Theorem 49 (Stokes’ Theorem) Let a vector field F and its curl be defined on a simple open surface S. If the corre-
spondingly oriented curve C is the boundary of S then∫

C
F · ds =

∫
S
∇× F · dS

Proof. Suppose that F = F1i + F2j + F3k so

∇× F =
(

∂F3
∂y

− ∂F2
∂z

)
i +
(

∂F1
∂z

− ∂F3
∂x

)
j +
(

∂F2
∂x

− ∂F1
∂y

)
k

Now suppose that S can be parameterised so that the position vector of a point as a function of (x, y) in some
domain D is

r = xi + yj + f (x, y)k

hence
Tx =

∂r
∂x

= i +
∂ f
∂x

k Ty =
∂r
∂y

= j +
∂ f
∂y

k

Consider now the surface integral of some vector field G,∫
S

G · dS =
∫∫

(x,y)∈D
G · ‖Tx × Ty‖ dx dy

=
∫∫

D
− ∂ f

∂x
G1 −

∂ f
∂y

G2 + G3 dx dy

Now put G = ∇× F to get

∫
S
∇× F · dS =

∫∫
D

(
∂F3
∂y

− ∂F2
∂z

)(
− ∂ f

∂x

)
+
(

∂F1
∂z

− ∂F3
∂x

)(
− ∂ f

∂y

)
+
(

∂F2
∂x

− ∂F1
∂y

)
dx dy (50)

Now consider the line integral of F round the boundary of S. The boundary of S can be thought of as the
image under f of the boundary of D. If the boundary of D can be parameterised as

œ : R → R2 œ(t) = x(t)i + y(t)j

then it is evident that C is given by

æ : R → R3 æ(t) = x(t)i + y(t)j + f (x(t)i + y(t)j) k
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Hence from the definition of a line integral

∫
C

F · ds =
∫ b

a
F(æ(t)) ·æ′(t) dt

= (F1i + F2j + F3k) ·
(

dx
dt

i +
dy
dt

j +
(

∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

)
k
)

dt

=
∫ b

a

(
F1 + F3

∂ f
∂x

)
dx
dt

+
(

F2 + F3
∂ f
∂y

)
dy
dt

dt

=
∫

œ
H · ds

The last line follows from the definition of a line integral in two dimensions. It is taken round the boundary
of D and

H =
(

F1 + F3
∂ f
∂x

)
i +
(

F2 + F3
∂ f
∂y

)
j

Green’s theorem in the plane is now used. Calculating the required partial derivatives, and remember that
each Fi is a function of x, y, and z = f (x, y),

∂H2
∂x

=
∂F2
∂x

+
∂F2
∂z

∂z
∂x

+ F3
∂2 f

∂y∂x
+

∂ f
∂x

(
∂F3
∂x

+
∂F3
∂z

∂ f
∂x

)
∂H1
∂y

=
∂F1
∂y

+
∂F1
∂z

∂z
∂y

+ F3
∂2 f

∂x∂y
+

∂ f
∂y

(
∂F3
∂y

+
∂F3
∂z

∂ f
∂y

)
Now returning to Green’s theorem in the plane, and the calculations preceding it,∫

C
F · ds =

∫
œ

H · ds

=
∫∫

D

∂H2
∂x

− ∂H1
∂y

dx dy

=
∫∫

D

∂F2
∂x

+
∂F2
∂z

∂z
∂x

+ F3
∂2 f

∂y∂x
+

∂ f
∂x

(
∂F3
∂x

+
∂F3
∂z

∂ f
∂x

)
− ∂F1

∂y
+

∂F1
∂z

∂z
∂y

− F3
∂2 f

∂x∂y

− ∂ f
∂y

(
∂F3
∂y

− ∂F3
∂z

∂ f
∂y

)
dx dy

=
∫∫

D

∂z
∂x

(
∂F2
∂z

− ∂F3
∂y

)
+

∂z
∂y

(
∂F3
∂x

− ∂F1
∂z

)
+

∂F2
∂x

− ∂F1
∂y

dx dy

This is precisely the same as equation (50) and hence the theorem is proved. �

(19.3) Conservative Fields

(19.3.1) Properties Of Conservative Fields

Definition 51 A vector field F is conservative if there exists a scalar field U such that F = ∇U. U is called the
potential.

This special class of vector functions appear in many physical applications, some of which are discussed
later. Given this simple condition a surprising number of results can be deduced.

Theorem 52 Let U be a scalar field, U : R3 → R, and let F = ∇U. If œ : R → R3 is a C1 path, then∫
œ

F · ds = U (œ(b))−U (œ(a))
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Proof. From the definition of a line integral and of F,

∫
œ

F · ds =
∫ b

a
∇U(œ(t)) · dœ

dt
dt

But notice that
d
dt

(U(œ(t))) = ∇U(œ(t)) · dœ
dt

and so putting dU1
dt = ∇U(œ(t)) · dœ

dt

=
∫ b

a

dU1
dt

dt

= U1(b)−U1(a)

= U (œ(b))−U (œ(a)) �

Theorem 53 Let F be a vector field of class C1, except possibly at finitely many points. The following are equivalent.

1. For any simple closed curve C,
∫

C
F · ds = 0.

2. For two simple curves C1 and C2 which have the same endpoints,
∫

C1

F · ds =
∫

C2

F · ds.

3. F = ∇ f for some scalar field f . If F has an exceptional point at which it is not defined, then f is also not defined
there.

4. ∇× F = 0.

Proof. To show equivalence of all the conditions, a circular argument is used.

1 ⇒ 2 Consider two curves with the same endpoints, parameterised by œ1 and œ2. Hence œ = œ1 −œ2 is
a closed curve, and so by (1), ∫

œ
F · ds = 0

0 =
∫

œ1

F · ds−
∫

œ2

F · ds∫
œ1

F · ds =
∫

œ2

F · ds

Hence the result.

2 ⇒ 3 Define f (x, y, z) =
∫

C
F · ds, and now since (by hypothesis) the exact path between the origin and

(x, y, z) is irrelevant, this integral can be evaluated in the following three ways. Suppose F = F1i +
F2j + F3k.

– Take a path along the x axis, then parallel to the y axis, then parallel to the z axis. This integral
can now be evaluated by considering the three components the path.

For the first component, the path is given by ti for 0 6 t 6 x which has derivative i. The required
integral is therefore∫

C1

F · dx =
∫ x

0
(F1(t, 0, 0)i + F2(t, 0, 0)j + F3(t, 0, 0)k) · i dt =

∫ x

0
F1(t, 0, 0) dt

Repeating a similar process for the other two components of the path gives

f (x, y, z) =
∫ x

0
F1(t, 0, 0) dt +

∫ y

0
F2(x, t, 0) dt +

∫ z

0
F3(x, y, t) dt

Taking the partial derivative of this with respect to z it is evident that
∂ f
∂z

= F3(x, y, z).
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– Take a path along the y axis, parallel to the z axis, then parallel to the x axis. From the definition
of a line integral this gives

f (x, y, z) =
∫ y

0
F2(0, t, 0) dt +

∫ z

0
F3(0, y, t) dt +

∫ x

0
F1(t, y, z) dt

Taking the partial derivative of this with respect to x it is evident that
∂ f
∂x

= F1(x, y, z).

– It clearly follows that
∂ f
∂y

= F2(x, y, z).

Hence f has the required property for these particular paths. However, since by hypothesis any path
can be chosen, the theorem holds.

3 ⇒ 4 Since F is the gradient of a scalar function, the result readily follows from Theorem 26

4 ⇒ 1 Let C be any closed curve, and S be a surface which has C as its boundary. (S must be chosen to avoid
any exceptional points of F.) Using Stokes’ Theorem,∫

C
F · ds =

∫
S
∇× F · dS

But by hypothesis ∇× F = 0, and hence the result.

A circular relationship has now been established between the conditions, so they are certainly all equivalent.
The truth of 1 follows from Theorem 52, when F is a conservative field. �

Commonly F is interpreted as being a force field, in which case
∫

C F · ds represents the “work done” in
moving a particle along C. It has now been shown that this quantity only depends on the endpoints of C,
and is zero if C is closed. An alternative interpretation is of V being a velocity, in particular of a fluid. The
line integral is then called the circulation

Let V(x, y, z, t) be a vector field on R3 of class C1, dependent upon some other parameter t. Also let ρ(x, y, z, t)
be a C1 scalar field on R3.
Practically, V may be though of as a velocity, and ρ may be thought of as a density.

Definition 54 (Conservation Of Mass) For a ‘velocity’ V, ‘density’ ρ, and Ω ⊂ R3

d
dt

∫
Ω

ρ dV = −
∫

∂Ω
J · dS

where J = ρV and ∂Ω is the bounding surface of Ω.

A dimensional analysis of the above equation shows that it represents a rate of mass. Notice that

•
∫

Ω
ρ dV is the mass in Ω.

•
∫

∂Ω
J · dS is the flux† of J and represents the rate at which mass leaves Ω.

The interpretation of the conservation law is that the rate of change of mass in Ω is equal to the rate at which
mass enters Ω.

Theorem 55 The conservation law for mass is equivalent to

∇ · J +
∂ρ

∂t
= 0

†Physicists call a surface integral ‘flux’.
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Alternatively, from the definition of J,

ρ∇ ·V + V · ∇ · ρ +
∂ρ

∂t
= 0

Proof. From the divergence theorem, ∫
∂Ω

J · dS =
∫

Ω
∇ · J dV

Now from the conservation of mass formula,

d
dt

∫
Ω

ρ dV +
∫

∂Ω
J · ds = 0∫

Ω

∂ρ

∂t
dV +

∫
Ω
∇ · J dV =

∫
Ω

∂ρ

∂t
+∇ · J dV = 0

and since this must hold for all Ω,

∂ρ

∂t
+∇ · J = 0

Hence the result. �

The conservation laws often result in a particular physical situation being modeled by Laplace’s equation,
∇2u = 0. A number of applications of the conservation laws are now given.

(19.3.2) Laplace’s Equation: The Heat Equation

Let T(x, y, z, t) be the temperature at a particular time in a body, and let F = ∇T be the temperature gra-
dient. Fourier’s Law states that the velocity of heat transfer is proportional to the temperature gradient.
The density of thermal energy is given by ρ = cρ0T and let J = −kF where the constant k is called the
conductivity.

If there is no heat source in Ω then the conservation law for heat must hold and so

d
dt

∫
Ω

ρ dV = −
∫

∂Ω
J · dS

and from Theorem 55

∂ρ

∂t
+∇ · J = 0

so cρ0
∂T
∂t
− k∇2T = 0

∂T
∂t

=
k

cρ0
∇2T

When T does not depend on time, this reduces to Laplace’s equation.

(19.3.3) Laplace’s Equation: Fluid Dynamics

Let u be the velocity of a fluid, and let ρ be the constant density of the fluid. If there are no points of mass
creation or destruction (sources or sinks) then when J = ρu,

∂ρ

∂t
+∇ · (ρu) = 0
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by conservation of mass, and now since ρ is constant it follows that ∇ · u = 0. The velocity is therefore
incomprehensible—which was an assumption anyway. Assuming that u is also irrotational, it can be ex-
pressed as u = ∇U for some scalar field U. Hence

∇2U = ∇ · u = 0

so Laplace’s equation appears here too. It would seem that having made the assumption that u is both
incomprehensible and irrotational would dramatically reduce the applicability of such theory. However,
such ‘potential flows’ have many applications, including modelling water waves.

(19.3.4) Laplace’s Equation: Potential Theory

Potential fields are most commonly applicable to gravitation and electrostatics. In the case of a gravitational
field, recall Newton’s Law Of Gravitation,

F =
−G
r3 r

where r is the position vector between the two masses under consideration and |r| = r. Now,

∇
(

G
r

)
= ∇

(
G√

x2 + y2 + z2

)
=
−1
2

G

(x2 + y2 + z2)
3
2

(2xi + 2yj + 2zk) =
−g
r3 r = F

So there exists a scalar field for which F is the gradient, hence F is a potential field.

Suppose that two masses m and M are at positions (x, y, z) and (X, Y, Z) respectively, then r = (x − X)i +
(y−Y)j + (z− Z)k. Now,

∇2
(

1
r

)
= ∇2

(
1√

(x− X)2 + (y−Y)2 + (z− Z)2

)

= ∇ ·
(
−r
r3

)
=

∂

∂x

(
−(x− X)

((x− X)2 + (y−Y)2 + (z− Z)2)
3
2

)
+

∂

∂y

(
−(y−Y)

((x− X)2 + (y−Y)2 + (z− Z)2)
3
2

)

+
∂

∂z

(
−(z− Z)

((x− X)2 + (y−Y)2 + (z− Z)2)
3
2

)

=
(

3(x− X)
r5 − 1

r3

)
+
(

3(y−Y)
r5 − 1

r3

)
+
(

3(z− Z)
r5 − 1

r3

)
=

3r2

r5 − 3
r3

= 0

From this it is evident that, since G is a constant, ∇2U = 0 where U =
G
r

.

There is a problem when the two masses are at the same point. This can be resolved by a further analysis,
but is of little concern at present. What is of interest is if the two masses are not points, but continuous
distributions, like say a gas cloud may be.

Suppose that (X, Y, Z) may take values throughout some region Ω. In this case let ρ be the density of mass
in Ω, giving

U(x, y, z) = G
∫∫∫

Ω

ρ(X, Y, Z)
r

dX dY dZ



19.4. FOURIER SERIES & PARTIAL DIFFERENTIAL EQUATIONS 29

Now taking the Laplacian,

∇2U = G
∫∫∫

Ω
ρ(X, Y, Z)∇2

(
1
r

)
dX dY dZ = 0

Note that ∇ operates on x, y, and z, not X, Y, and Z. Hence for (x, y, z) /∈ Ω, ∇2U = 0. In the case when
(x, y, z) ∈ Ω it can be shown that ∇2U = Gρ.

(19.4) Fourier Series & Partial Differential Equations

(19.4.1) Fourier Series

Definition 56 For any function f of period T = 2L which is defined on the interval [− L, L], f has the Fourier series

a0 +
∞

∑
n=1

an cos
(nπx

L

)
+ bn sin

(nπx
L

)
where

a0 =
1
L

∫ L

−L
f (x) dx

an =
1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx

bn =
1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx

Every such function has a Fourier series, but whether or not the Fourier series converges to the function is
another matter entirely.

Note that a function is piecewise continuous if it is continuous on every closed bounded interval (a, b) with
the exception of finitely many points in (a, b). The integral of a piecewise continuous function over (a, b)
always exists.

Theorem 57 Let f be periodic with period 2π, be piecewise continuous on [− π, π], and have a left or right (or both)
derivative at each point in [− π, π]. If this is so, then the Fourier series converges to f wherever f is continuous, and
to f (x+

0 )+ f (x−0
2 if f is discontinuous at x0.

This theorem was proved in the nineteenth century by German mathematician Dirichlet. A less strict con-
dition for convergence has not yet been found. If any of the conditions fail at some particular point then
the Fourier series may not converge there, but it will still converge elsewhere. The convergence of the series
therefore depends on the values x may take.

Observe that if f is even its Fourier series expansion contains only cosine terms and the coefficients are
given by

a0 =
2
L

∫ L

0
f (x) dx and an =

2
L

∫ L

0
f (x) cos

(nπx
L

)
dx

Similarly, if f is odd then its Fourier series expansion contains only sine terms and the coefficients are given
by

bn =
1
L

∫ L

0
sin
(nπx

L

)
dx

These results can be used to make Fourier series for functions which are only defined on [0, L] rather than
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[− L, L]. Extending the function into [− L, 0] can be done in one of the following two ways

fo(x) =

 f (x) 0 6 x 6 L

f (− x) −L 6 x 6 0
fe(x) =

 f (x) 0 6 x 6 L

− f (− x) −L 6 x 6 0

Clearly fo is an odd function and so has a sine series, while fe is an even function and so has a cosine series.

(19.4.2) Partial Differential Equations

Boundary Value Problems

In this rather simple treatment of partial differential equations—and mostly of Laplace’s equation—concern
lies with homogeneous linear equations. In order to find a precise solution rather than a family of solutions
it is necessary to give information about a particular application of the equation to be solved.

• Conditions specifying the behavior of the solution at points in its spatial domain are called boundary
conditions.

• Conditions specifying the behavior of the function at a particular time are called initial conditions.

In the simplest case, boundary conditions may be of the form f (x0) = k for some constant k; these are called
Dirichlet boundary conditions. Conditions of the form ∂ f

∂xi

∣∣∣
x0

= k are called Neumann boundary conditions.

Obviously, calculations are simplified if k = 0.

A second order linear partial differential equation in two variables will most generally be of the form

A
∂2u
∂x2

1
+ B

∂2u
∂x1∂x2

+ C
∂2u
∂x2

2
= F

(
x1, x2, u,

∂u
∂x1

,
∂u
∂x2

)
Note that x1 and x2 need not be spatial variables, one could be time. Such differential equations are classified
as follows.

• If AC− B2 > 0 then the equation is elliptic.

• If AC− B2 = 0 then the equation is parabolic.

• If AC− B2 < 0 then the equation is hyperbolic.

The following three equations have very important physical interpretations, and should be noted well.

1. Laplace’s equation, ∇2u = 0 has A = C = 1 and B = 0. Clearly it is elliptic.

2. The one dimensional diffusion equation (the heat equation) is given by

∂u
∂t

= D
∂2u
∂x2

which is inhomogeneous. A = B = 0 so this equation is parabolic.

3. The one dimensional wave equation is given by

∂2u
∂t2 = c2 ∂2u

∂x2

which has A = 1, B = −c2, and C = 0. Clearly this is a hyperbolic equation.

An equation with variable coefficients may change between these classifications within its domain.
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The Heat Equation With Dirichlet Boundary Conditions

The heat equation in one dimensions models the dispersion of heat in a bar of length L. Say the temperature
at any point at any time is given by T(x, t) where 0 6 x 6 L. The Dirichlet boundary conditions are then
T(0, t) = T0 and T(L, t) = T1 for all t.

In general T will model temperature in a volume V bounded by a surface S = ∂V. The Dirichlet boundary
conditions are established by saying that S is maintained at a constant temperature so that T(S) = k. The
Neumann boundary conditions are established by saying that S is insulated so that no heat is lost. This
means that where n is normal to S, ∇T · n = 0 when evaluated on S, so there is no heat flux.

Worth special mention is the Steffan problem where ∇T · n = T(x, t)k(x) when evaluated on S and where x
represents the spatial co-ordinates of the system.

Attention is now turned to solving the one dimensional heat equation with boundary conditions T(0, t) = 0
and T(L, t) = 0 for all t. It is also required to know that T(x, 0) = f (x), the initial condition. Note that in one
dimension S is simply the two endpoints of the bar.

Using separation of variables, assume that the solution is of the form T(x, t) = F(x)G(t). Substituting in,

∂T
∂t

= D
∂2T
∂x2

F(x)
dG
dt

= DG
d2F
dt2

1
DG

dG
dt

=
1
F

d2F
dx2

Now, the left hand side is a function of only t, and the right hand side is a function of only x. The equation
can therefore only hold if the two expressions are both equal to the same constant, k, say. This gives

dG
dt

− kDG = 0 (58)

d2F
dx2 − kF = 0 (59)

First of all the x dependent equation is solved so that the first two boundary conditions can be used.

k > 0: Clearly the solution is

F(x) = Aeµx + Be−µx where µ =
√

k

so F(0) = 0 = A + B

and F(L) = 0 = AeµL + Be−µL

= A
(

eµL − e−µL
)

Clearly A = 0 is possible, but is of no interest. The other possibility is that eµL − e−µL = 0. Now,
µ2 = k and k > 0 so in this case this equation has no solution, hence neither does equation (59).

k = 0: The solution is simply F(x) = Ax + B, and from the boundary conditions F(0) = 0 gives B = 0, and
F(L) = 0 gives A = 0. Hence there is only the trivial solution.

k < 0: Say k = −p2 so that the equation becomes

d2F
dx2 + p2F = 0

giving F(x) = A sin (px) + B cos (px)
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Now, F(0) = 0 gives B = 0, so to satisfy the other boundary condition, sin (pL) = 0 which can happen
only for specific values of p.

sin (pL) = 0 gives p =
nπ

L
(n ∈ Z) so F(x) = A sin

(nπ

L
x
)

(n ∈ Z)

For the sake of argument take A = 1, and since this is an even function it is only really necessary to
consider positive n. Hence define

Fn(x) = sin
(nπ

L
x
)

for n ∈ N

It follows that the constant k can be any one of − n2π2

L2 for n ∈ Z.

Returning now with knowledge about k to equation (58),

dGn

dt
+ λ2

nGn = 0 where λ2
n = Dk = D

nπ

L∫ 1
Gn

dG = −λ2
n

∫
1 dt

Gn = Bne−λ2
nt

The Bns could be determined now, but are left for later as a useful result occurs. Since T = FG it is
evident that the solutions are

Tn(x, t) = Bne−λ2
n x sin

(nπ

L
x
)

These are called the eigenfunctions with eigenvalues λn. Notice that these decay with time. Using
the principle of supposition, in fact any linear combination of these solutions is also a solution, so

T(x, t) =
∞

∑
n=1

bn sin
(nπ

L
x
)

e−λ2x

where the coefficients from the linear combination and the Bns have been combined into the bns. Now
using the remaining initial condition that T(x, 0) = f (x),

f (x) =
∞

∑
n=1

bn sin
(nπ

L
x
)

but clearly this is the Fourier sine series expansion of f , from which it is deduced that the values of
the coefficients are given by

bn =
2
L

∫ L

0
f (x) sin

(nπ

L
x
)

dx

The Heat Equation With Neumann Boundary Conditions

Boundary conditions are not chosen in an arbitrary manner: they are the result of a realistic situation. The
Dirichlet boundary conditions arise by maintaining the temperature along the boundary of the region under
consideration to zero (or constants).

Neumann boundary conditions arise in the case when the boundary is insulated so that no heat can flow
across it. For a volume V with boundary ∂V = S which has normal vector n it must then be the case that
∇T · n = 0.

In the case of an one dimensional bar, this gives

∇T · n =
∂T
∂x

i · i =
∂T
∂x

= 0
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which must happen at the boundary i.e. when x = 0 and x = L. As well as these conditions, it is given that
T(x, 0) = f (x).

To solve the heat equation ∂T
∂t = D ∂2T

∂x2 separation of variables is used again to give equations (58) and (59),

dG
dt

− kDG = 0 (58)

d2F
dx2 − kF = 0 (59)

For the x dependent equation, (58),

k > 0: The solution is of the form

F(x) = Aeµx + Be−µx where µ =
√

k

giving
dF
dx

= Aµeµx − Bµe−µx

From this it is clear that the boundary conditions give A = B = 0.

k < 0: Put k = −p2 so that

F(x) = A cos (px) + B sin (px)

giving
dF
dx

= −Ap sin (px) + Bp cos (px)

so F′(0) = Bp = 0 hence B = 0

and F′(L) = −Ap sin (pL)

Assume A 6= 0 giving p =
nπ

L
for n ∈ N

hence Fn(x) = Bn cos
(nπ

L
x
)

k = 0: In this case F(x) = Ax + B so F′(x) = A giving A = 0. However, B is undetermined, so calling it B0 it
can be combined with the case k < 0 to give the final result

Fn(x) = Bn cos
(nπ

L
x
)

n ∈ Z+
0

Returning now to the other equation, equation (59),

dGn

dt
+ λ2

nGn = 0 where λ2
n =

√
D

nπ

L

the general solution to which is
Gn(t) = Ae−λ2

nt

Hence

Tn(x, t) = An cos
(nπ

L
x
)

e−λ2
nt

T(x, t) =
∞

∑
n=0

An cos
(nπ

L
x
)

e−λ2
nt

Now using the initial condition,

f (x) =
∞

∑
n=0

An cos
(nπ

L
x
)
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which is in the form of a half range Fourier cosine series, hence the coefficients An must be given by

An =
2
L

∫ L

0
f (x) cos

(nπ

L
x
)

dx

Notice that at t → ∞ all the terms in the sum tend to zero due to the exponential factor. This is with
exception of the first term, so the temperature of the bar will approach A0

Laplace’s Equation

The Dirichlet and Neumann boundary conditions to Laplace’s equation, ∇2 = 0, have the following inter-
pretation. Consider a volume V with bounding surface S = ∂V.

• The Dirichlet boundary conditions specify u(x, y, z) = f (x, y, z) for (x, y, z) on S. When f = 0 a solution
can be found using Green’s theorem.

• The Neumann boundary conditions specify du
dn = ∇u · n = f (x, y, z) for (x, y, z) on S. Some functions

f will lead to the problem having no solution.

• Alternatively, a mixture of Dirichlet and Neumann conditions can be given on different parts of S.

Note that there is no time dependence in Laplace’s equation. An interpretation of the boundary conditions
can be made by considering a constant heat flow, with fixed temperature on S, insulation on S, and a mixture
of both.

Solution To Laplace’s Equation On A Disc

Consider Laplace’s equation in plane polar co-ordinates

∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2 = 0

and let the region of interest be a disc of radius R so tat r = R is the boundary. The Neumann boundary
condition is then

∂u
∂r

= f (θ) r = R

Using separation of variables, assume that the solution is of the form u(r, θ) = F(r)G(θ) hence substituting
in,

∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2 = 0

G(θ)F′′(r) +
G(θ)F′(r)

r
+

F(r)G′′(θ)
r2 = 0

r2

F(r)
F′′(r) + r

F′(r)
F(r)

=
G′′(θ)
G(θ)

The only way this can hold is if both sides are constant, say k, giving

r2F′′(r) + rF′(r) = r
d
dr

(
r

dF
dr

)
= kF(r) (60)

G′′(θ) + kG(θ) = 0 (61)

Because the domain is a disc, G must be periodic with period 2π. Considering equation (61),

k < 0: The solution is of the form Aeθ
√

k + Be−θ
√

k which is certainly not periodic and so is discounted as a
possible solution.
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k > 0: Say p2 = k then the solution is of the form

G(θ) = A cos (pθ) + B sin (pθ)

This is periodic with period 2π whenever p is integer. Hence let

Gn(θ) = An cos (nθ) + Bn sin (nθ) n ∈ Z+
0

For equation (60) consider the substitution s = ln r giving

s = ln r
ds
dr

=
1
r

From the chain rule dF
dr = dF

ds
ds
dr , so substituting,

r
d
dr

(
r

dFn

dr

)
= n2Fn(r)

d
ds

(
dFn

ds

)
= n2Fn(s)

d2Fn

ds2 − n2Fn(s) = 0

so the solution is Fn(s) = A∗
nens + B∗ne−ns n 6= 0

so Fn(r) = A∗
nrn + B∗nr−n n ∈ N

For n = 0, F0(s) = c1s + c2 so F0(r) = c1 ln r + c2. Hence for any particular n the solution is

un(r, θ) =


(

A∗
nrn + B∗nr−n) (An cos (nθ) + Bn sin (nθ)) n ∈ N

c1 ln r + c2 n = 0

Now using the principle of supposition,

u(r, θ) = c1 ln r + c2 +
∞

∑
n=1

(
A∗

nrn + B∗nr−n) (An cos (nθ) + Bn sin (nθ))

The boundary conditions have yet to be used, and there is clearly a problem at the origin. These are
now dealt with.

For problems with physical applications it is not generally possible for the solution to approach infin-
ity at the origin. Were the domain an annulus rather than a disc this would not be a problem. To solve
this problem the offending terms are removed by setting the appropriate constants to zero. Hence

u(r, θ) = c2 +
∞

∑
n=1

rn (An cos (nθ) + Bn sin (nθ))

Note that A∗ can be incorporated into A and B.

Next the boundary condition is used. In Cartesian form this was ∂u
∂n = f (θ). Now, clearly the normal

unit vector to the boundary is er and hence the boundary condition becomes

∂u
∂er

= ∇u · er =
∂u
∂r

= f (θ)
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Hence differentiating with respect to r and setting r = R,

f (θ) =
∞

∑
n=1

nRn−1 (An cos (nθ) + Bn sin (nθ)) (62)

Using results for the coefficients of a Fourier series it is evident that

An =
1

nRn−1
1
π

∫ 2π

0
f (θ) cos (nθ) dθ

Bn =
1

nRn−1
1
π

∫ 2π

0
f (θ) sin (nθ) dθ

Observe that if the right hand side of equation (62) is integrated between 0 and 2π the result is zero.
Hence a solvability criterion for the Neumann boundary conditions is that

∫ 2π

0
f (θ) dθ = 0

This is reasonable since if Laplace’s equation is interpreted as modeling heat in the disc then this
criterion specifies that there is no heat flux. Also,the value of c2 cannot be determined from the
information given.


