Chapter |7
MSMXG4 Complex Variable Theory

(17.1) Complex Functions

(17.1.1) Complex Numbers

First of all it is convenient to review some of the basis properties of the complex numbers. A complex
number is an ordered pair of real numbers, written x + iy where x,y € R and i = /—1. The set of complex
numbers is denoted as C. The usual properties of a field hold for the complex numbers, i behaves as would
be expected for an algebraic factor. When performing calculations it is of course useful to remember that
7 =-1.

As an ordered pair, a complex number can have a graphical representation in a plane. Where z € C such
that z = x + iy the Cartesian plane can be modified so that the x axis is the real axis and the y axis is the

imaginary axis. This is called the Argand diagram.
Definition | If zx + iy € C then the absolute value (or modulus) of z, written ||z|, is the real number \/x% + 2.

Definition 2 If zx + iy € C then zZ = x — iy is the complex conjugate of z.

From the definition of a complex conjugate the following can readily be shown.

Assertion 3 1. Z14+z2p=2z1+2

2. 2z = |z)?
3. |z1z2| = |;| |2
4. 7120 = 7120
a|_ sl
| |z
6. |z1 + 22| < |z1] + |22
7. Re(z) = 22 and similarly Im(z) = ~— =

2

Having represented complex numbers in the Cartesian plane, a logical next step is to express them in a polar

form. This is done in the obvious way giving x + iy = r(cos 6 + isin ) where § = tan~! % and r = ||z||.
However, 0 is not unique, as it can be readily replaced by 6 + 2k7r where k € Z. The set of all possible values

of 8 is called arg (z), and the following definition is therefore made.

Definition 4 The unique element of arg (z) which lies in the range (—rt, 7t] is called the principal argument of z, and
is denoted as Arg (z).

The following identity should be noted.
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Assertion 5 arg (z1zp) = arg(z1) + arg(z) = {01 + 6, | 61 € arg(z1), 62 € arg(zz)}

However, there is another form which makes calculations even easier.
Definition 6 (Exponential Form Of A Complex Number) ¢ = cos0 + isin 0

It can be shown that (ei91> (ei92> = ¢/(%1102) but this must be done from the formulae for sin (2 + b) and

cos (a + b) in order to avoid a circular argument.

Theorem 7 (DeMoivre’s Theorem)
(cosf +isinf)" = cos (n6) + isin (nd)

. n .
Proof. The easy way is to observe that <6’9> = ¢ Alternatively, use proof by induction. O

Sufficient theory is now available to solve the following kind of problem.
Example 8 Find the 3rd roots of the complex number 1 — i.

Proof. Solution Seek z such that z> = 1 —i. Now, |1 —i] = 12+ (—1)2 = V2 and arg(1 —i) =

1 _
tan—! (jl) = 47[, being careful to make sure that the value of 6 is in the correct quadrant. Therefore,

22 = V2exp (i(%ﬁ +2k7r)) where k €Z

i(=F + 2k
z= \éfZexp (Mgln) +2k27‘[> ki,koe Z

-9 7w

. -7 ..
So the principal arguments for the roots are —, 1p siving as the answers

127 127

z1 = /2e12 Zy = \éﬁe%n z3 = \éfZe% O

(17.1.2) Complex Valued Functions Of A Complex Variable

Having gained experience with complex numbers, it is natural to extend to functions of these numbers. As

usual a function f : S — T has the properties

e Vs € S 3!t € T which is the image of s under the function.

e S is called the domain and T is called the range.

It is evident that any complex function must have an expression of the form

flx+iy) = ulx,y) +iv(x,y)
where 1 : R x R — R
andv: RxR — R

Perhaps the most basic type of function is the polynomial, which has an interpretation in the complex sense,

Definition 9 Suppose that n > 0 and ag, a1, . ..,a, € C where a, # 0. Then

Pz)=ag+mz+ - +az"
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is a polynomial of degree n.

Furthermore, if R(z) and S(z) are polynomials, then T(z) = % is a rational function, wherever it is defined.

Drawing a graph of a complex function is difficult, as it is a map from a plane to a plane. Translations
and rotations are easy to visualise, but for anything more complicated drawing a graph is near impossible.

Despite this handicap, it is possible to produce the usual results of analysis.

Definition 10 Let zg be a complex number, and € > 0 be a real number. The e-neighbourhood of zg is defined by the set

B(zo,€) ={z | |z—z0| < &}

So a complex number z is said to be in the neighbourhood of zj if 3¢ > 0 such that z € B(zy, €).

Definition || Let S, T C C, let f be a function f : S — T, and suppose that zy € C.

lim f(z) =wp (wo €T)

& given €>0 36>0 suchthat |f(z) —wp| < € whenever 0 < |z—zp| <6
< f(z) € B(wg,€) whenever z € (B(zg,6)\ {zo}) NS

The usual results for limits can now be proved.

Theorem 12 Suppose that f is a function, and Zlirrzl f(z) exists, then it is unique.
—20
Proof. Suppose the result is false, so that say
zh—>nz10 f(z)=w; and zh—>nz10 f(z) = ws

where w; # wy. The situation is something like that shown in Figure 1.

By the definition of a limit,
Ve > 0361 >0suchthat0 < [z—2zp| <& = |f(z) —wy| <e

And similarly,
Ve > 030, >0suchthat0 < |z—2zp| < = [f(z) —wy| <c¢

Let v = |wy — wy| and consider e < % Clearly

|f(z) —w| < %
@)~ ws| <
adding, |f(z) — w1 |+ |f(z) —wa| < (13)
However,
w1 —wy| = |wy — f(2) + f(z) — wy|
< |f(2) —wi| + |f(z) —wa| Dby the triangle inequality

From equation (13) this gives
1< If@) —wi|+f@) —wa| <

This is clearly a contradiction, hence the theorem holds. O
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Figure 1: The limit of a function must be unique

Theorem 14 Ifz = x + iy and f(z) = u(x,y) + iv(x,y), then where zg = xo + 1yo and wy = ugy + ivy,

lim =w = lim u(x,y) = ug and lim o(x,y) =0
= gy Y = Mo oy Y = 0

The proof of this theorem is omitted, but it follows much the same form as an example of finding a limit.

Theorem 15 (The Algebra Of Limits) Suppose that f and g are functions with lim f(z) = ¢ and lim g(z) = p.
z—20 =20
Then,

1. Jim (f +9)@) = ¢+ p
2. lim kf(z) =k¢ keC
zZ—2Zp
3. lim f(z2)3(2) = ¢p
—Z0
o f ¢
4. lim =(z) = - 0
lim (@ = 07
Proof.
1. By the definition of a limit,
Ve>0 34, >0 suchthat [f(z)—¢|<e whenever 0< |z—2zp| <d
and similarly,
Ve>0 34y >0 suchthat [g(z)—p|<e whenever 0 < |z—2z| <&
Hence taking J < min (d1,d2),
f(2) — 9| < g and  |g(z) — p| < ; for & < min(y,6)

[f(2) — ¢l +18(z) —p| <
|f(z) +g(z) — (¢ +p)| < e by the triangle inequality

and hence by the definition of a limit, the result holds.
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2. Again from the definition of a limit,

|f(z) —¢| < % for some 6 > 0O where 0 < |z—zp| <J
K[ |f(z) — ol <e
[kf(z) —k¢| < e

And so by the definition of a limit, the result holds.

3. From the definition of a limit,

|f(z) —¢| <e where |z—2zp| <5
|g(z) —p| <& where |z—2zp| <
8(2) —p| + lp| <&+ ol
|g(z)] < e+ |p| by the triangle inequality
now, |f(2)8(z) — ¢pl = |f(2)8(2) — pg(2) + $8(2) — Pp|
< |9l 18(2) —pl + 182 | f(2) — ¢
< |gple+e(e+1pl)

<€

since £1 can be made arbitrarily small. Hence by the definition of a limit, the result holds.

4. Asabove,
|f(z) —¢| <e where |z—z0| <5
[f@] <e+[o]
|g(z) —p| <& where |z—zp| <
8@ < e+ ol
now,
‘@_Q - @_@+@_£‘
8@ el 8@ e o p
1 1 1
= D — — =) + = x) —
‘f()(g(Z) p) p U (P)‘
lf@)l 1
— ¢ + R
ls@llel™ lol
epsilon
<é&
since €1 can be made arbitrarily small. Hence by the definition of a limit, the result holds. g

An instant application of this theorem is to polynomial functions, which are composed of products and
sums. It also follows that if lim f(z) = wp then lim |f(z)] = |wp|, which is shown using the triangle
z—20 z—2Zp

inequality.
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(17.1.3) In[dity

Defining limits for finite points in the complex plane is all very well, however, in a plane ‘infinity” is not
really defined. On the real line this is not a problem, the real line has order but a plane does not — changing

from a line to a plane introduces such problems.

An obvious way to re-define ‘infinity’ is to say that the modulus of the complex number increases without

bound. This idea is formulated rigorously in terms of the Riemann sphere.

Imagine the complex plane, and a sphere is ‘pushed through’ it at the origin, so that the central part of the
plane is deformed into a hemisphere — all these points already lie on the sphere. Above the surface of the
complex plane now protrudes a hemisphere, and any point in the remaining (flat) plane is now joined by a
straight line to the top of the sphere, and so this line will intersect the sphere at some point. As this point of

intersection approaches the top of the sphere, the complex number approaches ‘“infinity’.

Note that distances between complex numbers in the complex plane are not preserved for their correspond-
ing points on the Riemann sphere. Since C does not contain any kind of ‘infinity” — as indeed R does not
— the extended complex numbers are defined to be C U {oo}. As would be expected, the following rules
hold for ‘infinity”.

a-+ 00 =00 a— 00 = 00 1.00 = 00

S| =

For any non-zero complex number a.

(17.2) Differential Calculus Of Complex Functions

(17.2.1) Continuity

A discussion of limits is clearly aimed towards differentiation, but before this the (obvious) definition of

continuity is made.

Definition 16 A function f(z) is continuous at a point zy € C if

o f(zp) is defined, and
o lim f(2) = f(z0)

A function is said to be continuous on a set S C C if it continuous at every point in S. Note by the algebra

of limits it is easily seen that polynomial functions are continuous.

In the same way that a real function is defined on a subset of R, a complex function may be defined on a
subset of C. However, the two dimensional nature of C makes the type of subset rather more complicated

than the simple open, closed, or half-open intervals of R.

Definition 17 Suppose that S C C and z € S.

1. Then one of the following holds,
(a) there exists a neighbourhood of z which lies completely within S. In this case z is said to be in the interior
of S.
(b) there exists a neighbourhood of z which contains no points in S. In this case z is said to be in the exterior

of S.
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(c) neither of the above two conditions hold, so that any neighbourhood of z contains points in S and points
not in S. Such a z is said to be a boundary point of S.

The set of boundary points of S is called the boundary of S.

Asubset Sof Cisopen < VzeS 36 >0 suchthat B(z,0) C S

S is open if every point in S is an interior point.

S is closed if it contains all its boundary points.

S is connected if any two points in S can be joined by a polygonal path lying wholly in S.
S is a domain if it is both open and connected.

S is simply connected if it contains no holes*

© o N S R LN

a domain together with some (or all) of its boundary points is called a region.

It is now possible to make a more useful definition regarding the continuity of a function

Definition 18 A function defined on a region R is said to be continuous on R, provided that it is continuous at every

point in R.

The ideas of these different kinds of subsets of C makes meaningful the idea of bounding.

Definition 19 A region R is bounded if 3r > 0 such that R C B(0,r).

And similarly for a function,

Definition 20 If a function f is defined on a region R, then f is bounded provided that

dM >0 VzeR suchthat |f(z)] <M VzeR

It is clearly seen that where f(x + iy) = u(x, y) + iv(x, y) is defined and is continuous on the closed bounded

region R, then

F@) =/ ()% + (o(x, )2

is continuous and attains its bounds.

(17.2.2) Derivatives

In the usual way,

Definition 21 Let f be a function whose domain of definition contains the point zq. The derivative of f at zg is defined
by the limit
f(z) — f(z0)

/ .
z9) = lim *X——"——~
f'(zo0) A

If the limit exists, then its value is called the derivative of f at zg and f is said to be differentiable at zy. Otherwise f

is not differentiable at z.

As with real functions, if a complex function is differentiable then it is continuous. For the real case this is

proved in Chapter ?? Theorem ??.

*This is a rather poor definition, although it is good enough for present purposes. A more rigorous definition considers
contracting cycles from any point in S.
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Theorem 22 Suppose that f(x + iy) = u(x,y) + iv(x, y) is differentiable at the point zg = xq + iyg. Then

_w
o

v
ox

_ou
Iy

u

fle) = 3t

X

+i
(x0,y0)

(x0,40) (x0,0) (x0,40)

This theorem reveals that in order for a complex function to be differentiable there must be a special rela-

tionship between its real and imaginary parts.

Proof. Because f is differentiable at zg, the limit can be taken through real values and through imaginary
values and the value of the limit must be the same i.e.

case 1: Approaching zg through real values,

lim J@ 82— fzo) _ . fzo+A%) — f(z0)

Az — 0 Az Ax—0 Ax
Az € R
— fim u(xg + Ax,yo) + iv(xg + Ax, y) — u(xo, yo) — iv(xo, Yo)
Ax—0 Ax
— fim u(xo + Ax,yo) — u(xo, Yo) n iv(xp + Ax, yo) — iv(xo, Yo)
Ax—0 Ax Ax
— aj +i al
ox (x0,Y0) ox (*0,Y0)

Hence the result.

case 2: Approaching through imaginary values,

flo+482) — fzo) _ . [z +AY) — f(z0)

lim -
Az — 0 Az Ay—0 iAy
ARez=0

_ hm u('xOI }/0 + A]/) + iU(XOI]/ + A]/) - M(XOI ]/O) - iv(x0/ ]/0)
AyHO lAy

i u(xo, Yo + Ay) — u(xo, yo) , iv(xo + Ax,yo) — iv(xo, yo)

= lm - + -
Ay—0 iAy iAy

~ lim —iu(xo, yo + Ay) + iu(xo, yo) n v(xg + Ax, yo) — v(xo, ¥o)
Ay—0 Ay Ay

|

Iy (x0,4/0) %y (x0,4/0)
Hence the result. O

Definition 23 If a complex function f is differentiable at a point zy and at every point in an open neighbourhood of z,
then f is analytic at z.

In the obvious way, f is said to be analytic on a domain D if it is analytic at every point of D. Furthermore,

if f is analytic at all points of C then it is called entire.

If f is entire, then the partial derivatives calculated in Theorem 22 will exist everywhere. By equating real

and imaginary parts,

Jou Jdv ou v



17.2. DIFFERENTIAL CALCULUS OF COMPLEX FUNCTIONS 9

These are called the Cauchy-Riemann Equations. Conversely, if the Cauchy-Riemann equations hold at z
then f is differentiable at zg provided that the four partial derivatives are continuous, and u and v are con-
tinuous at zg. Hence a function can be shown to be entire by showing that the Cauchy-Riemann equations
hold for all C.

Theorem 25 Let f be an analytic function defined on a domain D. If f'(z) = 0 then the function is a constant.

Proof. Since f is analytic the Cauchy-Riemann equations holds so,

ou dv ou Jv
/ = — — — —]— _— =
f(z)_ax "ox lax+ay 0

Hence equating real and imaginary parts

w_dv o w_ou_
ox dy ox Ay
Ju Jdu . . .
Now, P = @ = 0 shows that u takes constant values on horizontal and vertical lines.
Jdv  Jv . . .
Furthermore, P = @ = 0 shows that v takes constant values on horizontal and vertical lines.

Hence f = u + v takes constant values on horizontal and vertical lines. Since the domain is connected, any

two points can be joined with horizontal and vertical lines, and hence f is constant. g
For a fuller proof, it would be necessary to show that the function is constant on diagonal lines so that any
two points of D can be joined with a polygonal line.

The algebra of limits shows the usual results for differentiation, and the usual rules for differentiation hold.

In particular,

1. the derivative of a constant function is zero.

2. %(cf(z)) = cﬂ ceC.

dz

3. %(z”) =nz" L.
d _df  dg
4. E(f(z) +g(2) = e + e

5. %(f(z)g(z)) = f(z)% + g(z)j—{: i.e. the product rule.

d (@) _ s - fE
dz \g(@) ()

7. %(f 0g(x)) = £ (f@)f (2). i.e. the chain rule.

i.e. the quotient rule.

(17.2.3) Harmonic Functions

Definition 26 Let u be a real valued function of two real variables x and y. u is a Harmonic function if its first and
second partial derivatives exist and are continuous, and obey the Laplace Equation,

%u  %u

gL Im )
9x2  9y?
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For an analytic function, from the Cauchy-Riemann equations,

o _ a0
dx  dy
%u 9%v %o

0 92 T axay | oyox

o (w0
© dy \ox

d d
(7 —u) by the other Cauchy-Riemann equation

by continuity

Ty \ dy
_ %
oy?
%u  d%u
h —_— _— =
ence 2 + E)y2 0

So if f is an analytic complex function — so the Cauchy-Riemann equations hold — then its real and imag-

inary parts are harmonic functions.
Definition 27 If two harmonic functions u and v obey the Cauchy-Riemann equations in a domain D, then where

fx +1iy) = u(x,y) + iv(x,y), v is the harmonic conjugate of u.

From the Cauchy-Riemann equations it is evident that if v is a harmonic conjugate of u, then —u is a har-

monic conjugate of v.

(17.2.4) Transcendental Functions
The exponential function is defined as e? = ¢** and notice that this is equal to e¥(cos y + i sin y).

d , 9, L0
% e’) = PP cosy—&—lae siny by Theorem 22

= ¢* cosy +ie*siny
— XTI — 2
So as would be expected, the derivative of ¢ is ¢.

Definition 28 The sine and cosine of a complex variable are defined as

. elZ _ e—ZZ elZ + e—lZ
sinz = ———— 08z = ———
2i

From these definitions expressions for the tangent, cotangent, secant, and cosecant can be found.

The logarithm is the inverse function of the exponential, but in the complex case this is problematic since e*

is not a bijection — ¢ = ¢+2 where k € Z.

Definition 29 The logarithm of a complex variable z is defined as
Inz=In|z| +iargz
which is multivalued and so is not a function. The principal logarithm is defined as

Lnz =In|z| +iArgz
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which is a function.

Notice that etz = elnlzl+iAgz — ||, Argz — 5 a5 would be expected. Since In x is continuous for x > 0 and

Argz is continuous for z ¢ R, it follows that the complex logarithm is continuous on C \ {R; }.

) . ) o1
Theorem 30 Let U = C\ {IR, } then Lnz is analytic on U with derivative ot

Proof. From the definition of a derivative,

. Lnz—Lnz . Lnz—Lnz
lim ——— = lim ————
z—-z) Z—2Zg z—zg elnz — elnzo

w — Wo

w>wy eW — eWo

from putting w = Lnz and wg = Lnzy. The subscript on the limit can be changed because the complex

logarithm is continuous i.e. Lnz — Lnzp and hence w — wy as z — zg. The continuity of the exponential is

. e — g0\ 71
Iim [ ———
w—wo w — Wy

= (ew")_1 because ¢ is differentiable with derivative e~
1

20

also required.

which holds for any zg € U. O

It has been seen that the complex logarithm is not a proper function, and the principal logarithm was defined

in the obvious way. However, there are many more ways to make the complex logarithm into a function.

Definition 31 Suppose that U is a domain, and f: U — C is a continuous function with the property /@ =z Vz €
U. Then f is called a branch of the logarithm in U.

Many possibilities for f are realised by making an appropriate restriction of the set arg z. Define
arg, z = {argz | argz € (a« — 27, 2]}

so that

Ingz =In|z| +iarg, z

Clearly this is a branch of the logarithm, but care must be taken in specifying on what domain. The set
arg, z behaves rather like Argz, where it necessary to exclude the negative real axis, R™ — recall that
Argz € (—m, m]. In the case of arg, z the acceptable range of values starts and ends at the half line § = «.

Hence the domain U is the complex plane less this half line.

Logarithms are closely linked with expressions of the form a4, in this case for some a € C. The exponent is

zlna zLna

defined asa* =e and the principal exponent by a}, = e
(17.3) Integral Calculus Of Complex Functions

(17.3.1) Paths & Contours

A real integral is usually interpreted as the area under a line, or the volume under a surface — see Chapters

?? and ??. However, in the complex case no such interpretation is readily available.
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Definition 32 Where [a,b] C R is an interval on the real line, a function «y: [a,b] — C is a path.

A path may commonly be identified by its image rather than the function, whichis thesetI' = {y(t) | t € [a,b]}.
It is possible that different functions produce the same image, so it is often more useful to speak of I" than

7. Note the following terminology.

o 7(a) is the initial point of -y.

e (b) is the terminal point of .

e I issimple if it “does not cross itself” i.e. Bt; € [a,b] Pty € [a,b] such that y(t1) = Y(t2).

e 7 isclosed if y(a) = y(b).

e 7 is simple closed if it is both simple and closed.

e 1 is smooth provided that 7 exists and is continuous.

e 1 is a contour if it is piecewise smooth.
If one path ends where another begins, it seems obvious that they can be added together to produce one
long path. However, care must be taken in finding the domain of the new path.

Suppose that y1: [4,b] — C and 7;: [¢,d] — C are paths with y1(b) = 72(c). In defining 1 + ¥, it is
required that the domain of -y, is translated so that it begins at b. Therefore

Mt+mn:labtle—d]—C
10 ift € [a,b]
—
Yot +lc—d|) ifte[bb+|c—d|
The orientation of a path can be reversed by defining v*: [b,a] — C.

Typically, a path may be expressed in the form y(t) = 7,(t) + i7,(f) in which case the derivative is the
obvious v/(t) = 7, (t) + ivL(t).

(17.3.2) Path Integrals

A path integral is simply an integral taken along a path. By composing a path with a complex function a

mapping of the form R L 4, C is produced which is a function from R to C. Say F(t): R — C with

F(t) = Fu(t) + iFo(t), then
b b b
/ th:/ Fu(t)dt+i/ F,(t) dt

Now, where z = (t), % =9@®). Bearing this in mind,

b
| f@ & [Craw)roa

Assertion 33 Where f is a continuous complex function and vy and vyp are contours with the terminal point of y;
coincidental with the initial point of 7y,

o J f@)dz=~[.f@)dz
¢ f’YH"Yz flz)dz = f'h f(z)dz+ f% f(z) dz

tPiecewise smooth means that the path is a sum of smooth paths
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e Wherec e C, f% cf(z) d(z) = cf% f(z) dz.

o If ¢ is another continuous function, f% f(2)+ g(z) dz = f% f(z)dz + f% ¢(z) dz.

Theorem 34 (Jordan Curve Theorem) Suppose that I is a simple closed contour in C. Then I' divides C into two
disjoint domains, one of which is bounded and the other of which is unbounded. They are denoted by Int I" and Ext I’

respectively.

Definition 35 Let f be a complex function that is continuous on a domain D. Suppose that F is an analytic function
with derivative f on D, then F is called an anti-derivative or primitive of f.

An anti-derivative behaves as it would be expected to, since

b
[ f@rdz= [ faon'®a
0% a

b q
= / SFO®) at

= [F(r#))
= F(y(b)) — F((a))

So given an anti-derivative to a function, its contour integral can be readily evaluated by putting the end-
points of the contour into the anti-derivative in this way. Furthermore, if the contour is closed then the

integral is zero.

The ML Result

The ML result is concerned with finding bounds for integrals.

Definition 36 Let «y: [a,b] — C be a contour. The length of vy is defined as

b
L(y) = / I7/()] dt

Lemma 37 Suppose that ¢ [a,b] — C is continuous, then
b b
‘/ 0 dt' < [Tlow] @

Proof. Let fab P(t) dt = re'f,

[ oo a] = Jre| = v =
r=e it / " ptey i = / "ot at

r= /h Re (eii‘;q)(t)) dt+i /h Im (eiiecp(t)) dt
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Equating real and imaginary parts, it is evident that [ Hb Im (e*wq)(t)) dt = 0. Also, since Re(z) = x <

/X2 + y% = |z| this gives

r< /ab‘e*’%(t)’ dt
:/ab‘e*"e
= ["1gw a

Hence the result. O

lp(6)] dt

Theorem 38 (The ML Result) Suppose that f is continuous on the domain D and vy is a contour of length L. If IM
such that |f(z)| < M forall zon T then ’fyf(z) dz) < ML.

Proof. Most of the work has already been done in Lemma 37,

M £(2) dz

b

:‘ | faton'e dt‘
b

< / [£(Y(®)7/(®)] dt by Lemma 37
b

= [C1rao | d

b
<M [ 7] dt
a

= ML

Hence the result. O

Cauchy-Goursat Theorem

It was noted that the integral round a contour y* has the opposite sign to that round <. In order to make
the value of an integral well-defined it is conventional to traverse contours anticlockwise: The interior of a

contour is on the left if the contour is simple closed.

Theorem 39 (Cauchy-Goursat) Let f be a function that is analytic on a simply connected domain D. Then for all
simple closed contours in D, f7 f(z)ydz=0.

This theorem is distinct from the result following Definition 35 in that it does not require the existence of
an anti-derivative. A subtle point is that the domain must be simply connected: The result does not hold
for % on C \ {0} since this domain has a ‘hole’ in it at the origin. However, C \ Rj would be a perfectly
acceptable domain.

Since any non-simple contour can be thought of as a number of different ‘loops’ i.e. simple closed contours,

it follows that if D is simply connected, f is analytic, and v is any closed contour then | y f(z)ydz =0.

Suppose that 71 and 77 are contours in a simply connected domain D which share the initial point z; and
share the terminal point z,. The contour v = 71 + <3 is then simple and closed and so f P f(z)dz =0.
From this it is readily deduced that j’h flz)ydz= [ " f(z) dz.

When drawing diagrams it is common to see very oddly shaped contourst. It would be incredibly diffi-

cult to describe these mathematically, so instead methods are sought to evaluate integrals round simpler

none here because theyre difficult to create
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I r

B¢(0)

L

Figure 2: Contours around a ‘bad” point

(preferable circular) contours.

1
7=

Lemma 40 If vy is any simple closed contour which has zg in its interior then | v = dz = 2mi.

Proof. By Theorem 34 the interior of a contour is open, and so there exists ¢ > 0 such that Be(zp) C Int+y.
Now consider 0 < r < ¢ and define 4,(t) = zo + ref for 0 < t < 27. Let I, join I" to I;. The situation is
illustrated in Figure 2

The function f(z) = ZJZO is analytic on the domain which is the interior of the curve

=T+, -,—TI,

Hence

1
/ dz=0
JIy 2 — 29

1 1 1 1
OZ/de—l—/ dz—/ dz—/ dz
rz Jr, z— 2o Jr, z—zg L, zZ—2o

1 l 27 1 . gt .
/ dz = dz = / —ire" dt = 27i (41)
Jrz—zg JI, z— 29 Jo et

Hence the integral round the complicated curve has the same value as the integral round the circle, which

is readily seen to be 27i. O

The above result can be generalised to the function % where zg € Int I

Working along the same principle of summing round different contours, it is possible to extend Cauchy-

Goursat.

Theorem 42 (Cauchy-Goursat For Multiply Connected Domains) Suppose that I is simply closed contour in a sim-
ply connected domain D and that I, T5,. .., I are disjoint simple closed contours in Int I" that aren’t nested. If f is

analytic on D\ | JInt I} then
i

/F ) olz_jnz1 /Fz () dz

Cauchy’s Integral Theorems

Clearly complex integrals have some very desirable properties—they disappear a lot. Essentially what

Theorem 39 says is that integrals round closed curves need only be evaluated round discontinuities in the
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domain of the integrand: Anywhere else the integral vanishes. Cauchy’s integral formulae provide neat

ways to evaluate these ‘bad points’ very easily.

Theorem 43 (Cauchy’s Integral Formula) Suppose that D is a simply connected domain upon which a complex func-
tion f is analytic. Let vy be a closed contour in D and zy € Int<y. Then

_ 1 f@
f(zo)*%./vz_

Proof. First of all,

L[ f@ g 1 [ @+ )~ o)

21ti Jy z — 29 271 Jy Z—2
1 f(Z) fE0) g, L[ SR 4
T omi, zZ— 2z 2711 v zZ— zo
_ 1 f(Z) —fz0) g4, fz0) L
2mi Jy  z—129 27 Jy 2 — 29

S L :f<zO> g2+ fen)

_ 1 f(2) f(2) — f(z0) f(Zo)
f(ZO)_ﬁ/yz—zod Zm/ z — 2

So it remains to show that 5 L f f@-1@) g, — . By the Jordan Curve Theorem, Theorem 34, B(zg, d1) C

zZ—2Zg

Inty and so for 0 < a0 < dq deﬁne the contour
Ya: [0,271] — B(zo, 1) by t+— zo+ we't

so clearly I}y C Int-y. Since the integrand f&)-fz) - —f@) g analytic on D \ Int I, by Cauchy Goursat for multiply

2z
connected domains,

f(z) — f(z0) f(Zo) f(z) — f(z0) f(Zo)
0% Z— 2 Ya Z— 20
Hence it is required to show that

lim
a—0

f@- @) |,
Yo«  ZTZ0
For this the ML result is used, and clearly L = 27ra. To find M first of all note that

m @~ f=0)

Z‘)ZO zZ — Z

= f'(20)

which can be written since f is analytic. Hence by considering ¢ = 1 in the definition of a limit,

35, > 0 such that 0 < |z —z9| < & = f(zz)_gz()) Flzo)| <1
However,
f(zz JE) _ prag) + ftag )‘ ‘f € f o) f’(ZO)‘ +|f'(z0)| Dby the triangle inequality
<1+]f (ZO |

Hence put M = 1+ |f'(z0)| so that for § < min (61, 5,)

@)~ fe) ‘ (1+ £ (z0)]) 270

Yo 2720
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Hence by the squeeze rule as & — 0 the required result is obtained. O

If a function has a number of bad points, then Cauchy-Goursat for multiply connected domains means that
it is only necessary to evaluate an integral round each bad point and then sum. Cauchy’s integral formula

can be extended, since differentiating with respect to zy n times it is clear that

e = g [ IO
.

271 Jy (z — zg)"H1

Note that if a function is analytic on a simply connected domain, then derivatives of every order exist and
are analyticg. It has been seen that if a function is analytic then it integrates to zero round closed contours.

However, the converse is also true.

Theorem 44 (Morera’s Theorem) Suppose a function f is continuous on a simply connected domain D, and that

f7 f(z) dz = 0 for all closed contours y in D. Then f is analytic on D.

Proof. Proof of Morera’s Theorem is made by finding the anti-derivative of f, F. By showing that F is
analytic, it is then concluded that its derivative f is analytic.

Suppose that z; and z; are distinct points in D. Since |, ” f(2) dZ = 0 for all closed contours, it follows that

the integrals along any contour joining z; and z; always have the same value.

Let a be some fixed point in D, then for some point z define the integral along any contour from a to z to be
Z
F@) = [ f0d

Now, F(z) = [, f(¢) d¢ + [} f(¢) dg. Hence

F(z)—F(zg) 1 z
e AL
So
F(z) - F(z0) 1
LY e = o [ @ e

1
”

Z
= — | f@-fe0d
20 Jzo
Now, since D is a domain, 34 > 0 such that B(zp,6;) C D, and the line connecting zj to z is in the ball
if 0 < |z —zg| < &1. This provides a bounding length for use in the ML result. Since any contour can be

chosen the straight line is used.

FOZTE)  pen)| = | 2o [ 5@ -
2=zl 0y _ M
=z =z

What remains is to find M, the maximum value attained by |f(z) — f(zp)| on on the contour connecting z to
zo. However, by hypothesis f is continuous, and so from the definition of a limit,

Ve > 0 39, > 0 such that 0 < |§*Z()| < = ‘f(g)ff(20)| <&

$This really should be presented ad proved as a proper theorem.
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Hence for é < min (61, d7)
F(z) — F(zo)
Z— 2

f (Zo)‘ <e
Hence F F

i |F@) = FGo)
z2—2g zZ— 2z

mﬂ:o

Since zp was chosen arbitrarily it follows that F is differentiable everywhere on C i.e. is analytic. Further-
more, the derivative of F is f, which, since it is the derivative of an analytic function must in turn be analytic.

Hence the result. O

(17.4) Properties & Uses Of Complex Functions

(17.4.1) Series Expansion Of Complex Functions
Sequences Of Functions
In a similar way to real analysis, sequences can be defined such as

2+sinn

{zn} = "

which is clearly convergent to zero. However, another parameter, z € C, can be introduced. The conver-
gence of the sequence is then dependent upon what values the parameter takes. A new function f can then
be defined as f(z) = lim fu(z).

n—o00

Definition 45 1. Let {z} be a sequence.

lim z, =w < Ve > 03N € N such that |z, —w| < e forn > N

n—oo

2. For a sequence { fu(z)} which is convergent to f(z),
(a) Ifnlg}O fu(z) = f(2) only for some z € U C C, then {fu(z)} is said to be piecewise convergent. Note
that the convergence depends on z.
() If nlgrc}o fu(z) = f(z) forall z € C then { fu(z)} is uniformly convergent. Note that the convergence does
not depend on z.

Assertion 46 The following theorems are asserted without proof.

i. Ifa sequence { fu(z)} is uniformly convergent to f and each f,,(2) is continuous, then f is continuous.

ii. Let f: [a,b] — C forall n € IN. If the sequence of these functions is uniformly convergent, then

ggfﬁmm:L%mw

It follows that if T is a contour in some subset of C and { f,,(z)} is uniformly convergent to f then

lim [y de = [ fe)de

Furthermore, if each f, is analytic on the same domain, then f is analytic on that domain. (This is shown from
Cauchy-Goursat and Morera’s Theorem).
(o8]

Consider Z fx(2), then its convergence can be determined by considering the sequence of nth partial sums,
k=0

n 00
an(z) = 2 fx(z). Note that Z fr(z) is convergent whenever {a, } is convergent, and they are convergent in
k=0 k=0
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20

Figure 3: Contours in an annulus, used for proving Laurent’s Theorem.

the same way i.e. uniform or piecewise.

Theorem 47 (Weierstrass M Test) Let Z My be a convergent series of positive terms then Z fr(2) is uniformly
=0 k=0
convergent on a region R provided that | fk(z)| < My forallz € R.

(e
Theorem 48 If Z fr(2) is uniformly convergent to f(z) on a region R then
k=0

(i) If each fy is continuous, then so is f.

(ii) If each fy is analytic, then so is f und Z di

(iii) For any contour I' in R, /Ff(z) dz = Z /Tfk(Z) dz.
: k=0

(o)

Recall that Z an(z — zp)"" is a power series about the point zg. If R = lim a | |
n—=0 |y 41

then R is the radius of
n=—co
convergence i.e. the sum is convergent for |z — zp| < R.

Expansions Of A Complex Function

Theorem 49 (Laurent’s Theorem) Suppose that f is analytic on an annulus D centred at zg, Ry < |z — zg| < Ry,
and let vy, be a contour of radius r centered at zo such that Ry < r < Ry. Then for z € Int D,

fO= % ez whee o= [ IO

s 27ti (s — zo)*+1

Proof. Suppose z € Int D and choose 1, 75 such that Ry < r; < |z — zg| < ry < Ry and let 7y, and 1, be the

corresponding contours centred at zg, as shown in Figure 13.

Now define the contour
F'=yn+1—=on—1
By hypothesis f is analytic on I' U IntI', which is the region shown shaded in Figure 13. Hence Cauchy’s
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integral formula can be used to give

RIS O
f(z)izm rs—
_ 1 ( | f(s) dor [ L as_ [ SO 4 [ SO ds)
27ti \ Jy, S—2 ns—z Yy S z 7S—2
_1,< O goi [ SO ds) (50)
21ti \ Jy, s —2 Yy 28
Now,
1 1
s—z  (s—z0)—(z—20)
1 1
eI
2(2720) for |Z-20| <1
sfz() = \s—20 5—20
. 1 1 & [(s—xz s —2zg
and similarly = Z for 1
z—s z—z0,=H\z—20 z— 2

Using these expansions to substitute into equation (50) gives

1 ad — n 00 _ n
f@)=5= / Z e (M) ds + Z f6) (ﬂ) ds
27 YTy =0 S — %0 \ S —Z0 T n=0 Z 20 \Z 20
Now, the integral and the sum can only be ‘swapped round’ if the sum is uniformly convergent on the

region under consideration. Now, for the first summation, the integration is over v, so |s — zg| = 3.

|(z — z0)"|
|ﬂﬂmj‘ﬁﬁq
[(z — z0)"|

n+1
]

< My

Where M; is the maximum value of f(s) along y,. Also, since z € Int I it must be the case that |z — zp| < 7.

|z = zo|"
1

n=0 r;l +

the Weierstrass M test the first summation is uniformly convergenton I' U Int I".

This produces a series ) | M; which consists of only positive terms and is convergent. Hence by

For the second summation, consider the mapping n — —n. An application of precisely the same argument

shows that this is also uniformly convergent on I' U Int I" and hence
—1

1 (¢ f(s) n ' f(s) n
f(z)—Zm,(Z/ Gy st ¥ / Gy ds>

n=0""r n=—co 1

Now, consider r; < r < rp, then by Cauchy-Goursat for multipally connected domains (wich is used
‘backwards’),

fO= 55 o s =RV

= Z cn(z — zg)"  where ¢, = L / f(s) ds

Z 2711 Jo, (s — 2oy
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Hence the result. O

In practice not all of the terms need be present. Indeed, a Laurent series is rather like a Taylor series but
starting ‘further down’. This different start position is caused by having to take into account a bad point in
the domain and so creating an annulus. If there is no such bad point to cope with, a normal Taylor series

suffices as the power series expansion.

Theorem 51 (Taylor’s Theorem) Suppose that f is an analytic function on the domain B = B(zq, R), then for z € B,

(z — z9)"

o (1)
o= §5 10

n=0 n

Proof. Evaluating at zg, the theorem clearly holds. Hence consider the annulus By = B\ {zo}, then applying

Laurent’s Theorem,

f@ =Y culz—z)" Wherecnzi/ %ds

ne—o 27T

Now, considering the different possibilities for 7,

(n)
o ifn>0thenc, = % by Cauchy’s integral formula for derivatives.
o if n =0 then ¢y = f(zg) by Cauchy’s integral formula.
e if n < O then % = f(s)(s — zo)P where p > 0. On B, ¢, is now the integral of an analytic
— 40

function round a closed contour in a simply connected domain, and hence is zero.

Hence the result. O

It can be shown that the Laurent or Taylor expansion of a function is unique on any given annulus or
domain. This means that changing the subset of C upon which the expansion is considered may well

change the expansion itself. This is best illustrated by means of an example.
1
Example 52 Find all the Laurent expansions of the function f(z) = e centred at 0.

Proof. Solution There are two Laurent expansions of this function, on the annuli
D1:0<|z| <2 and Djy:|z| >2
Taking each case in turn,

on Dy: Using partial fractions,

-1
fo=2 -3

Now, since |z| < 2,

%z‘ < 1 and hence
-1 0 n
- 1 1
_ 2
WF?“ZZGQ
-1
2

=2 Zn
=~ Lo
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This is therefore the unique Laurent series expansion on Dj.

on Dy: Again using partial fractions,

—_

f@) =

N ‘N‘L N ‘N‘l

Both cases are now covered, each of them has its own unique Laurent series. O

(17.4.2) Singularities & Residues
Singularities

It has been seen that functions may have ‘bad points” in their domain which prevent—or in some cases

cause—certain results to be used. This idea is now formalised.

For an analytic function £, p is a zero of f if f(p) = 0. Consider the Taylor series expansion of such a function

about a zero p,
[ee)

f@) =Y anz—p)"

n=0
If f(z) # 0 then the sum must have a first non-zero term, say when n = N. This gives fN)(p) # 0 and
0" (p) = 0 for all m < N. Here N is called the order of the zero—the number of times the function can be
differentiated without it disappearing. Observe that the Taylor series can be expressed as
fNp)

(N+1)
f(z)—(z—p)N( - +f(N+1(§?<z—p>+...>

Which is in the form (z — p)Ng(z) where g is an analytic function.

Definition 53 Suppose that p € C and f is a function. p is an isolated singularity of f if

o f is not analytic at p.

o Je > 0such that f is analytic on B(p,e) \ {p}

Notice that if there is an isolated singularity at p then f has a Laurent series expansion about p, although

the radius of convergence may only be very small, say

(o] (o)

A=Y a-p'=Y Y ez p)

n=—oo n=1 z—p" n=0

where b, = c_,.



17.4. PROPERTIES & USES OF COMPLEX FUNCTIONS 23

The term ) | (zbﬁ is called the principal part of f.
n=1\"""

o If there are a finite number of terms in the principal part of f,i.e. 3N € IN such that b, =0 Vn > N,
then p is said to be a pole of order N. If N = 1 then p is a simple pole.
o If there does not exist such an N, so that Vn € IN 3k > n such that by # 0, then p is called an isolated

essential singularity.

e If b, = 0Vn € N then p is called a removable singularity.

These different situations are probably best illustrated by means of the following three cases.

o Let f(z) = 1 This is already its Laurent expansion about zero, and clearly ¢, # 0 < n = —1. Hence
0 is a simple pole of f.
o Let f(z) = (sz23)5. Performing some algebra,
z+3 z—24+5 1 5
fO= e " e—2r -2 e-oF

From this Laurent expansion it is evident that f has a pole of order 5 at z = 2.
e The function f(z) = z—z is not defined at z = 0. However, clearly its Laurent expansion is z> and so it
has a removable singularity at z = 0. A more usual example of this is the function sin %
Theorem 54 The following are equivalent
1. f(z) has a pole of order N.
2. 2113;17 z—-p)NtfE) =o0.
3. (z — p)N f(2) has a removable singularity.

Proof. To prove equivalence a circular relationship is established.

1 = 2 Consider the Laurent expansion of f,

N N
O e T
by(z — p)N T n by_1z — p)N !
(z—pN (z—pN-1

+-dagta(z—p)+...

(Z - P)N+1f(2) = + ... +ﬂo(z _ P)N+1 +Ll1(Z _ p)N-‘rZ ¥

From this it is clear that Zhn;] (z— p)N +1 f(z) = 0, as required.

2=3
lim (z = p)" 1 f(z) = 0

Zlig;(z—p)NH Y az—pt=0

n=—oo
[ee]
lim Y cuz—p)"NT =0
z=p
lim Z cn(z — p)y TNt =0 by excluding bad terms
P (—(N+1)

Zlg Y cm(z—p)" =0 byputtingm =n—(N+1)

m=0
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This series has no terms of negative power, so the singularity must be removable.

3 = 1 In a similar way to before, since (z — p)N f(z) has a removable singularity,

(- ) = f anlz — p)"

f2) = 2 an ”’"
N b m
= mzl ET + Z am(z — p)

With the last line following by shifting the sum. By definition it is evident that f has a pole of order
N, hence this implication is proved.

It has now been established that 1 = 2 = 3 = 1 so the equivalence is proved. O

Theorem 55 (The Great Picard) Suppose that f is a complex function with an isolated essential singularity at zg.
Then f takes all values with at most one exception, in any neighbourhood of zg.

This theorem indicates the very different nature of simple poles and isolated essential singularities. If zg is
a simple pole of f then |f(z)] — o0 as z — zg without exception. With the isolated essential singularities,

f(z) can approach any value, depending on how z — zj.

Residues

Definition 56 Let f be a complex function defined on a domain D, and let p be an isolated singularity in D. If the
Laurent expansion of f about p is

fee]

f@= ) cuz—p)

n=-—oo

then the residue of f at p is defined as

e 1
Res(f,p) Z ey = - [ _f;§z1+1 = 5= / f(2) dz

2710

The integral expression follows from the difinition of a Laurent series.

Theorem 57 (The Residue Theorem) Suppose that vy is a simple closed contour in a domain D, and let f be a complex
function which is analytic on D except at finitely many points, p1, p2,. .., px, all of which line in Inty. Then

. k
/ f(z) dz = 2711 Y Res (£, p;)
Y i—1

Proof. Since the singularities are isolated they can each be contained within a contour, 1, 2, ..., 7%, say. By
Cauchy-Goursat for multiply connected domains (Theorem 42),

k
/ f@dz=Y [ f@z)dz
v i=1 i

k
=2mi ) Res(f,p;)
i=1

which follows directly from the definition of a residue. O
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The obvious way to calculate a residue is to find the appropriate Laurent expansion and pick out the —1th

coefficient. However, there are more efficient ways to proceed.
Rule 1. If f has a simple pole at p, Res (f, p) = ;inr; (z—p)f(2).

Rule 2. If f(z) = % where ¢ and h are analytic on a domain U, then if f has a simple pole at p and

. h(z)
= 0 then R ,p) =1 .
3(p) en Res (f, p) ZIB}J <)
8" @)
Rule 3. If f has a pole of order m at p, then where g(z) = (z — p)" f(z), Res (f, p) = ;m}; ITEEE
Rule 4. If f(z) = % where g and / are analytic on a domain U, then if f has an isolated essential singu-

larity at p calculate the first few terms of the Taylor series of ¢ and /, and then divide.

Rule 5. Calculate the Laurent series expansion of f directly.

(17.4.3) Evaluation Of Real Integrals
Integrals Of Trigonometric Formulae

An integral of the form f027r f(cosB, sinf) df can be evaluated by making a substitution—or rather the

opposite to a substitution. Consider z ~ ¢/ so

1 1
cosf =~ |z+— and sinﬁzl, z—1
2 z 2i z

. _— . dz
This substitution also gives == Hence

27 . 1 1 1 1 1
A f(cosB, sinf) df = [Yf (E (z—l— E) xr (Z— E)) P dz

where 7 is the unit circle, and note that on the unit circle z = z. Finding and evaluating residues at the

singularities in Int 7y allows the integral to be evaluated using Theorem 57.
It is necessary to integrate the complex integral round the unit circle so that it reduces to the original integral:

introducing a factor to change the radius will change the value of the integral.

Improper Integrals

Improper integrals of the variety with infinite limits can be evaluated, provided the Cauchy principal value

definition of the integral is taken, i.e.

) R
[ e e pim [ ) dx

This definition has the advantage that when f is an odd function the value of the integral is zero at all stages

of the limiting progress. Indeed, other definitions produce different values for the integral.

Simply substituting z for x in f, consider the integral of f(z) round the semi-circular contour
YR = {z | |z| = r then Imz = 0}

This is illustrated in Figure 17.4.3.
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Imz
A

\

TR

—

> Rez

Figure 4: Contour of integration for use in evaluating improper real integrals.

It is required that f(z) is analytic on the upper half plane, except at finitely many poles, none of which are
on the real axis. R is then chosen so that all the singularities of f(z) (in the upper half plane) are contained
in Int yg. The problem is now reduced to finding the residues of f(z) at the singularities in Int yg and using
the residue theorem (Theorem 57). Where g, is the circular part of yr and g, is the straight part, this gives

fim ( " () dz) — lim ( /y @z [ g dz)

R—o0 TR YRs

= [ fedr fim [ fe)de

/_Zf(x) dx = lim (ka(z) dz—ARcf(z) dz)
=27mi ) Res (f,p) _J%EEO_L £(z) dz

The remaining problem now is to show that the integral round the semi-circular part of R is zero.

In some cases it is possible to use the ML result, observe that on yg_, |z| = R and that
|zZ| =|z—c+c| < |z+c|—|c| hence |z+c| > |z|+ |c]
In other cases a more detailed analysis is needed.

Lemma 58 (Jordan’s Lemma) Let yg = {z | z=Re? for 0 < 6 < n} and suppose that M(R) = sup |f(z)|. Then
ZETR
ileim M(R) =0,
lim e"?f(z) dz =0
R—0c0 Jyp
foralla > 0.

This allows integrals of the form

Cos X
dx x) is a polynomial
/_ o @) p(x) is a poly:

iz

p(z)

to be solved by considering

Indenting Integrals

If there are any singularities on the real axis, then the method described above does not work. In order to
evaluate such integrals the singularities are ‘jumped over’. The contour of integration is shown in Figure
17.4.3

It is assumed that each singularity is a simple pole. Round each pole p define the semi-circular contour of
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Imz
A

\

TR

Lo —= > Rez

p

Figure 5: Contour of integration for use in evaluating improper real integrals with singularities.

radius ¢, ¢, which is traversed clockwise—the wrong way. Hence

p—e R
/ fz)dz = / F(z) dz + / F(z) dz + / F(z) dz + / £z) dz
r J—R Ye pte JI
Now, since each pole is simple, the laurent expansion of f(z) about p is of the form

_ Res(f,p)
f@)= = +g(2)

where g is analytic and so is continuous, hence by the ML result
lim [ g(z)dz=0
€0/,

and hence

lim [ f(z) dz = lim "~ Res(fp) dz = —miRes (f, p)
e—0 Ve €200 Jyy, Z—p

with the minus because v is being traversed clockwise, and 7i instead of 27ti (from Cauchy’s integral

formula) because only half of -, is being traversed.

Hence where I is the complete contour,

e R
/rf(z) dz:yf& (LPR f(z) dz+'[rsf(z)dz+/ll]+sf(z) dZ+/rcf(Z) dz)
R
omi Y Res(f,p):/7Rf(z)dz+/r‘f(z)dzfm'ZRes(f,p)

p€ntl’ pER

/j{f(z)dz:Zm’ Y Res(f,p)+7riZRes(f,p)—/Ff(z)dz

pEntI’ pER

Using Jordan’s lemma to show that the integral round the semi-circular contour 7. is zero as R — oo the

solution to the original integral can be found.
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