
Chapter 25

MSMYM4 Combinatorial Optimisation

(25.1) Efficiently Solvable Problems Using Linear Programming

(25.1.1) Statement Of The Problem And Basic Results

A linear programming problem in standard form may be written as

f (x) = cTx → min

aT
i x = bi for i ∈ I

aT
i x > bi for i /∈ I

xj > 0 for j ∈ J

xj free for j /∈ J

The matrix A of constraint coefficients may then be expressed as

A =

(
aT

i | i ∈ I
aT

i | i /∈ I

)
=
(

Aj | j ∈ J Aj | j /∈ J
)

where the column vector ai is the ith row of A and the column vector Aj is the jth column of A. The dual
problem so this is constructed as follows.

• The new objective function is φ(ß) = ßTb and is to be maximised.

• For each constraint inequality introduce a dual variable πi > 0.

• For each constraint equation introduce a free dual variable.

• For each constrained primal variable xj with j ∈ J introduce a constraint inequality ßTAj 6 cj.

• For each free primal variable xj with j /∈ J introduce a constraint equation ßTAj = cj.

Definition 1 Let MP and MD be the sets of all feasible solutions to the primal and dual problems respectively. Let
Mopt

P and Mopt
D be the sets of optimal solutions.

Theorem 2 (The Weak Duality Theorem) ∀x ∈ MP ∀ß ∈ MD cTx > ßTb

Corollary 3 Following from the weak duality theorem

1. If x ∈ MP and ß ∈ MD and cTx = ßTb then x and ß are optimal.

2. If min
x∈MP

cTx = −∞ then MD = ∅.

3. If max
ß∈MD

ßTb = ∞ then MP = ∅.

1
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Theorem 4 (The Strong Duality Theorem) MP 6= ∅ ⇔ MD 6= ∅ and when this is so cTx = ßTb.

These results provide useful information about when a linear programming problem can be solved. A
summary is given in Table 25.1.1.

Dual Solution Primal Problem
(this column) Mopt

P 6= ∅ min
x∈MP

cTx = −∞ MP = ∅

Mopt
D 6= ∅ ⇔ impossible impossible

max
ß∈MD

ßTb = ∞ impossible impossible row ⇒ column

MD = ∅ impossible column ⇒ row possible

Table 1: Possibilities for solutions to the primal and dual problems.

The bottom right hand entry in Table 25.1.1 says simply that the combination is possible: finding, say,
MD = ∅ gives no information about MP. However, the table is very useful in determining whether a given
linear programming problem can be solved. Indeed, given the large amount of work needed to solve a
linear programming problem and the relatively small amount of work needed to check these criteria, it is
prudent to use them.

For example, suppose it is found that MD = ∅—this is plausible since sometimes in the translation to the
dual the constraint equations become inconsistent. It must then be the case that either MP = ∅, or f (x) is not
bounded below. Exhibiting a single feasible solution to the prime will then show that f (x) is not bounded
below.

It is often the case that the dual will have less variables than the primal and so be easier to solve. To this end
it is useful to be able to solve a dual problem with information only about the primal (remember the dual to
the dual is the primal).

Theorem 5 (The Complementary Slackness Theorem) Suppose x ∈ MP and ß ∈ MD then x and ß are optimal if
and only if (

cj − ßTAj

)
xj = 0 = πi

(
aT

i x− bi

)
for all i and all j.

Proof. Define for all i and j

uj =
(

cj − ßTAj

)
xj

vi = πi

(
aT

i x− bi

)
For a linear programming problem in standard form

(
cj − ßTAj

)
> 0 and

(
aT

i x− bi
)

> 0 by definition.
Furthermore, for a free primal(dual) variable equality holds in the dual(primal) constraint and so uj > 0
and vi > 0. Define u = ∑j uj and v = ∑i vi then both u and v are non-negative, as is u + v. Now,

u + v = ∑
j

cjxj −∑
j

ßTAjxj + ∑
i

πia
T
i x−∑

i
πibi

= f (x)−∑
j

ßTAjxj + ∑
i

πia
T
i x− g(ß

= f (x)− g(ß)
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This is because

∑
j

ßTAjxj = ßT Ax = ∑
i

πia
T
i x

(⇒) Suppose that ß and x are optimal, then f (x) = g(ß) and so u + v = 0. But u and v are sums of
non-negative terms, hence uj = 0 = vi for all i and j.

(⇐) Suppose that uj = 0 = vi for all i and j then u + v = 0 = f (x)− g(ß) and hence f (x) = g(ß) i.e. the
solution is optimal. �

The complementary slackness theorem is useful for solving a primal problem when the solution to the dual
is known as it allows simultaneous equations to be constructed for the solution to the primal problem.

Information About The Dual In The Simplex Table

The initial simplex table consists of a matrix B and the identity matrix I. Now, f (x) = z0 = cT
BB−1b and

since f (ß) = ßTb it must be the case that when x (and ß) are optimal ß = cT
BB−1. Hence ß can be calculated

from the final simplex table as follows:

• Let ek be the kth ordered basis vector appearing in column j of the original simplex table. Therefore
zj = cT

BB−1ek giving zj = πj.

• Let cj be the relative cost in column j of the final simplex table, so cj = cj − zj = cj − πk.

• Hence in the final simplex table, πk = cj − cj.

(25.1.2) The Primal-Dual Algorithm

The primal-dual algorithm takes a feasible solution to the dual and keeps modifying it until an optimal
solution to the primal can be found. Let ß ∈ MD then ßTAj 6 cj for all j. Now, by complimentary slackness

(Theorem 5) when ß and x are optimal
(

cj − ßTAj

)
xj = 0. Therefore if cj − ßTAj > 0 set xj = 0. Define

J =
{

j | ßTAj = cj

}
so that for j /∈ J it must be the case that xj = 0. The next task is to find values for xj when j ∈ J. Observe
that

b =
n

∑
j=1

Ajxj = ∑
j∈J

Ajxj + ∑
j/∈J

Ajxj = ∑
j∈J

Ajxj

In order to find the missing values in x a trivial solution is found by adding in artificial variables. The
simplex method is then used to eliminate these in favour of the missing values. Hence define the restricted
primal problem

ξ =
m

∑
i=1

xa
i → min

xa
i + ∑

j∈J
aijxj = bi

xj, xa
i > 0

To solve this the auxiliary costs cj = 0 for j ∈ J and ci = 1 for xa
i are used.

• If ξ = 0 then disregard the artificial variables to give optimal solution the the original problem, x.
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• If ξ > 0 then not all of the missing values in x can be found. Hence consider the dual to the restricted
primal.

Let ß be an optimal solution to the dual restricted primal. ß is now used to modify ß to create a new solution,
say ß∗ = ß + θß. Certainly ß∗Tb > ßTb as ß is not optimal. Hence θ > 0. For feasibility it is required that
ß∗Aj 6 cj or rather that

ßTAj + θß
T

Aj 6 cj

• If ß
T

Aj 6 0 then

ßTAj + θß
T

Aj 6 ßTAj 6 cj

with the second inequality following from the feasibility of ß. Hence in this case ß∗ is feasible for all
θ, except when the conditions of Theorem 6 apply.

• If ß
T

Aj > 0 then θ must be chosen so as to maintain ß∗TAj 6 cj for j ∈ J. Hence require

ßTAj + θß
T

Aj 6 cj

θ 6
cj − ßTAj

ß
T

Aj

∀j

6 min

 cj − ßTAj

ß
T

Aj

| ß
T

Aj > 0, j /∈ J


Note that if this gives θ 6 0 then there is in fact no solution for θ as θ > 0. The condition j /∈ J is required
to prevent θ = 0 and indeed it is the xj with j /∈ J for which solutions are sought. If no such θ can be found
then MP = ∅ whereas otherwise the process is repeated with the new feasible solution to the dual problem
ß = ß∗.

Theorem 6 For the restricted dual problem if ξ > 0 and ß
T

Aj 6 0 for all j then MP = ∅.

Proof. By the weak duality theorem it is sufficient to show that ßTb → ∞.
If j ∈ J then ßAj > 0.
If j /∈ J then by hypothesis ßAj > 0. Hence

ßTAj + θß
T

Aj 6 ßTAj 6 cj

because ß is dual feasible. Hence for all θ > 0 ß + θß is feasible and

ßTb + θß
T

b → ∞ as θ → ∞ �

(25.1.3) The Maximum Flow Problem

The maximum flow problem is formulated in terms of a digraph. One vertex is the source from which edges
only leave, and another is the sink to which edges only arrive. The weight of each edge is the capacity of
that edge. The task is to find the maximum flow through the graph from the source to the sink.

Definition 7 A digraph N is a network if there exists a vertex s (called the source) where no edges arrive and there
exists another vertex t (called the sink) from which no edges leave. Where b is the weight function, b : E → R+ the
network is denoted N = (V, E, s, t, b).

Definition 8 The function f : E → R+ is a flow in a network N if
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1. 0 6 f (vi, vj) 6 b(vi, vj) for all (vi, vj) ∈ E. These are called the capacity constraints.

2. The flows at intermediate vertices are conserved, i.e.

∑
{j|(vi ,vj)∈E}

f (vi, vj) = ∑
{j|(vj ,vi)∈E}

f (vi, vj)

Notation 9 The following alternatives may be used to aid clarity.

• Let fij = fk = f (vi, vj) where ek = (vi, jj).

• Let f =
(

f1 f2 . . . fn

)T
.

• Let bij = bk = b(vi, vj) where ek = (vi, jj).

• Let b =
(

b1 b2 . . . bn

)T
.

From this the conservation law may be expressed more simply as

∑
ek enters v

fk = ∑
ek leaves v

fk for v ∈ {v ∈ V | v 6= s, v 6= t}

Definition 10 The value of a flow f , v( f ) is the amount of flow that runs through the network, hence

v( f ) = ∑
ek leaves s

fk

Definition 11 The incidence matrix A for a network (V, E, s, t, b) is defined by

aij =


1 if ej leaves vi

−1 if ej enters vi

0 otherwise

So rows correspond to vertices and columns correspond to edges.

It is immediately obvious from the sum ∑
j

aij f j that for fixed i

∑
j

aij f j = ∑
ej leaves vi

f j − ∑
ej enters vi

f j = 0 (by conservation) for vi 6= s, vi 6= t

∑
j

aij f j = ∑
ej leaves s

f j = v

∑
j

aij f j = − ∑
ej enters t

f j = v′

Af =


v in the position correpsonding to the row for s

v′ in the position correpsonding to the row for t

0 otherwise (by conservation)

Intuitively, whatever leaves the source should reach the sink, so that v′ = −v. Hence Af = −vd where
−d has a 1 in the position corresponding to the source and a −1 in the position corresponding to the sink.
Hence Af + vd = 0. Furthermore it is required that f 6 b and that f > 0. Hence the maximum flow problem
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is in fact the linear programming problem

v → max

Af + vd = 0

f 6 b

f > 0

Note this problem has n + 1 variables—the n flows and v. There are n (the number of vertices) constraint
equations (because A is N ×m and f is m× 1) and n (the number of edges) constraint inequalities.

Certainly v is non-negative, and clearly f = 0 is always a feasible solution.

Lemma 12 A maximal flow exists whenever the capacities of edges leaving the source and entering the sink are finite.

Proof. Every linear programming problem is either infeasible, f min → −∞ or has at least one optimal
solution. For the maximal flow problem f = 0 is a feasible solution and by finiteness of capacities f min →
−∞ is impossible. Hence an optimal solution must exist. �

The Ford-Fulkerson Algorithm

Having formulated the maximum flow problem as a linear programming problem the obvious thing to do
would be to apply the dual simplex algorithm. However, instead the dual simplex algorithm is used to
prove the correct operation of the Ford-Fulkerson algorithm which is now presented.

Definition 13 For a network (V, E, s, t, b) and flow f an augmenting path p is a path from s to t in the undirected
graph (V, E′) where E′ = {{i, j} | (i, j) ∈ E} with the following properties.

• If p traverses {i, j} ∈ E′ and (i, j) ∈ E (a ‘forwards edge’) then fij < bij. So forwards edges are unsaturated.

• If p traverses {j, i} ∈ E′ and i, j) ∈ E (a ‘backwards edge’) then fij > 0. So backwards edges are non-empty.

The objective now is to increase flow to saturation on forward edges and decrease flow on backward edges
to zero. Hence along such a path the maximum change in flow that can be made is

δ = min
(i,j) on p

{ fij | (i, j) is a backward edge} ∪ {bij − fij | (i, j) is a forward edge}

The task now is to find such a path.

Algorithm 14 (Labelling Algorithm) The vertices in a network are labelled as follows.

1. Let f be a feasible flow and L : = {s}. Label s by (∅, ∞).

2. Select a vertex x ∈ L which has label (l1(x), l2(x) say, and set L : = L \ {x}.

3. Scan the network from x as follows.

(a) If (x, y) ∈ E and fxy < bxy then label y by

(
x, min{l2(x), bxy − fxy}

)
(b) If (y, x) ∈ E and fyx > 0 then label y by

(
−x, min{l2(x), fyx}

)
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When y is labelled set L : = L ∪ {y}.

4. Repeat from 2 and terminate when L = ∅.

Observe that by construction δ = l2(t). However, if t is not reached the flow must be optimal—this is called
‘nonbreakthrough’.

Algorithm 15 (Ford-Fulkerson) A maximal flow may be found as follows.

1. Let f be a feasible flow.

2. With the flow f , remove any existing labels and run the labelling algorithm.

3. If t is labelled then construct an augmentation path and increase the flow along it giving flow f ′. Set f = f ′

and continue from 2.

4. If t is not labelled terminate.

Two questions must now be answered in order to show that the Ford-Fulkerson algorithm works. Firstly,
it must be determined whether the algorithm terminates. Secondly, if the algorithm does terminate, does it
give an optimal flow?

Maximal Flow

To prove optimality at termination requires rather a lot of work. The strategy is to find feasible solutions to
the dual of the maximum flow problem and use it to establish—through a rather convoluted process—an
upper bound on v( f ). The final step is to show the maximal flow to be equal to the minimum value of this
bound. (This sounds contradictory, but a little thought may show otherwise.)

First of all construct the dual to the maximum flow problem

v → max

Af + vd = 0

f 6 b

f > 0

Recall |V| = n and |E| = m. To the first n conservation constraint equations assign the new free variable
π(x) where x is the vertex corresponding to the particular equation. To the m capacity constraint inequalities
assign a new non-negative variable γ(x, y) where (x, y) ∈ E is the edge corresponding to the particular
inequality. The coefficients of the various constraints may be represented in the form

A d
I 0

The left hand column corresponds to the elements of f. Any column in A has a 1 where x ∈ V and−1 where
y ∈ V say. The bottom part then has 1 when (x, y) ∈ E. This gives rise to the constraints

π(x)− π(y) + γ(x, y) > 0 ∀(x, y) ∈ E

The right hand side is 0 because the elements of v have cost coefficient 0 in the objective function, v → max.
The right of the constraint coefficient array given above corresponds to v. Hence by the definition of d and
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the form of the objective function the single equation π(t)− π(s) = 1 is obtained. Hence the dual to the
maximum flow problem is

∑
(x,y)∈E

b(x, y)γ(x, y) → min

π(x)− π(y) + γ(x, y) > 0 ∀(x, y) ∈ E

π(t)− π(s) = 1

γ(x, y) > 0 ∀(x, y) ∈ E

π(x) free ∀x ∈ V

Definition 16 An s-t cut in a network N is a pair (W, W) such that V = W ∪̇W, s ∈ W and t ∈ W. The capacity of
the cut is

c(W, W) = ∑
x∈W
y∈W

(x,y)∈E

b(x, y)

Lemma 17 Every cut determines a feasible solution to the dual of the maximum flow problem as follows

γ(x, y) =

1 if (x, y) ∈ E and x ∈ W, y ∈ W

0 otherwise

π(x) =

0 if x ∈ W

1 if x ∈ W

Furthermore, the value of the objective function is equal to the value of the cut.

Proof. Let (x, y) ∈ E then by the definition of this solution

π(x)− π(y) + γ(x, y) =



0 if x ∈ W and y ∈ W

0 if x ∈ W and y ∈ W

1 if x ∈ W and y ∈ W

0 if x ∈ W and y ∈ W

π(t)− π(s) = 1

So the solution is feasible. The value of the objective function is given by

∑
(x,y)∈E

b(x, y)γ(x, y) = ∑
x∈W
y∈W

(x,y)∈E

b(x, y) = c(W, W)

�

Lemma 18 For any cut (W, W) and any flow f

v( f ) = ∑
x∈W
y∈W

f (x, y)− ∑
x∈W
y∈W

f (x, y)
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Proof. Let (W, W) be a cut and f be a flow. Since flow is conserved at vertices

∑
{y|(x,y)∈E}

f (x, y)− ∑
{y|(x,y)∈E

f (y, x) = 0 ∀x /∈ {s, t}

and ∑
{y|(s,y)∈E}

f (s, y) = v

let v = ∑
x∈W
y∈V

(x,y)∈E

f (x, y)− ∑
x∈W
y∈V

(y,x)∈E

f (y, x)

= ∑
x∈W
y∈W

(x,y)∈E

f (x, y) + ∑
x∈W
y∈W

(x,y)∈E

f (x, y)− ∑
x∈W
y∈W

(y,x)∈E

f (y, x)− ∑
x∈W
y∈W

(y,x)∈E

f (y, x)

= ∑
x∈W
y∈W

(x,y)∈E

f (x, y)− ∑
x∈W
y∈W

(x,y)∈E

f (x, y) �

Theorem 19 Let N be a network, let f be a flow in N and let (W, W) be a cut. Then

1. for every flow f and every cut (W, W), v( f ) 6 c(W, W) and the value of the maximal flow is equal to the value
of the minimal cut.

2. if the Ford-Fulkerson algorithm terminates then it does so at maximal flow.

Proof. 1. Let f be a flow and (W, W) be a cut. By Lemma 17 there exists a feasible solution to the dual of
the maximum flow problem with

c(W, W) = ∑
(x,y)∈E

b(x, y)γ(x, y)

Since this value is to be minimised duality theory gives v( f ) 6 c(W, W).

Suppose now that f ∗ is an maximal flow and run the Ford-Fulkerson algorithm starting with this flow.
Since f ∗ is optimal the algorithm must terminate in the first iteration without finding an augmenting
path. Define

W = {v ∈ V | v is labelled when the Ford-Fulkeson algorithm terminates}

W = WC

which, trivially, is a cut. Now by Lemma 18

v( f ∗) = ∑
x∈W
y∈W

(x,y)∈E

f ∗(x, y)− ∑
x∈W
y∈W

(x,y)∈E

f ∗(x, y)

= ∑
x∈W
y∈W

(x,y)∈E

b(x, y)

= c(W, W)

2. Let f ∗ be a flow found by the Ford-Fulkerson algorithm, then a cut can be defined in the same way as
above. But then by the same calculation v( f ∗) = c(W, barW) and so has the same flow as the maximal
flow. �
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Termination

Although maximal flow is found at termination there is no guarantee that the Ford-Fulkerson algorithm
terminates at all.

Theorem 20 The Ford-Fulkerson algorithm terminates whenever the edge capacities are rational.

Proof. First of all suppose the capacities are natural numbers. The Ford-Fulkerson algorithm begins with a
zero flow, which is an integer flow. All flows found by the algorithm will be integer because

δ = min
(i,j) on p

{ fij | (i, j) is a backward edge} ∪ {bij − fij | (i, j) is a forward edge}

is an integer and δ > 1. But therefore the flow increases by at least 1 at every iteration, so if f ∗ is a maximum
flow (one always exists) then the algorithm will terminate in at most v( f ∗) iterations.

Suppose now that b : E → Q+ so that bj = pj
qj

for pj ∈ N and qj ∈ N, say. Take D = lcm{qj} then
Dbj is integer for all j. Consider the maximum flow problem with the capacity function Db, which are all
integers. Hence the algorithm terminates in at most Dv( f ∗) iterations where f ∗ is an optimal flow in the
new maximum flow problem. �

If b : E → R then there is no guarantee that the algorithm will terminate.

(25.1.4) The Transportation Problem

The transportation problem is to match producers A1, A2, . . . , Am with capacities a1, a2, . . . , am with con-
sumers B2, B2, . . . , Bn with capacities b1, b2, . . . , bn in such a way as to minimise the total cost of transport,
where the cost of transportation from producer Ai to consumer Bj is cij.

It is easy to solve such problems using the Hungarian Method described in Chapter ??. However, the
problem may be formulated as a linear programming problem and so as with the maximum flow problem
a solution using the primal-dual algorithm is sought. The formulation as a linear programming problem is

m

∑
i=1

n

∑
j=1

cijxij → min

m

∑
j=1

xij = ai

n

∑
i=1

xij = bj

xij > 0 ∀i, j

From Chapter ?? recall that

• If the transportation problem has a feasible solution then it has an optimal solution.

• The transportation problem has a feasible solution if and only if ∑m
i=1 ai = ∑n

j=1 bj. When this condi-
tion holds the problem is said to be balanced.

• If ∑m
i=1 ai < ∑n

j=1 bj a ‘dummy’ producer Am+1 with the required capacity is added with costs of
transportation zero.
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The first step in the application of the primal-dual algorithm is to find the dual. This appears to verge on
the impossible until the following matrix representation of the constraints is constructed.

x11+x12+· · ·+x1n = a1

x21+x22+· · ·+x2n = a2

. . .
...

xm1+xm2+ · · ·+xmn = am

x11+ x21+ . . . · · ·+xm1 = b1

x21+ x22+ . . . · · ·+ xm2 = b2

. . .
. . .

. . .
...

x1n+ x2n+ . . . · · ·+xmn = bn

For them m constraint equations for the producers introduce the new free variables αi. For the n constraint
equations for the consumers introduce the new free variables β j. The dual is then

m

∑
i=1

αiai +
n

∑
j=1

β jbj → max

αi + β j 6 cij ∀i, j

Clearly a feasible solution is αi = 0 ∀i and β j = min{cij ∀i} for all j. Now to find the restricted primal let
K = {(i, j) | αi + β j = cij} to give

ξ =
m+n

∑
k=1

xa
k → min

xa
i + ∑

{j|(i,j)∈K
xij = ai for 1 6 i 6 m

xa
mj

+ ∑
{i|(i,j)∈K

xij = bj for 1 6 j 6 n

xij > 0 for all (i, j) ∈ K

xa
k > 0 for all 1 6 i 6 m + n

At this point a useful relationship can be deduced. Summing the objective function and all the constraint
equations gives

ξ =
m

∑
i=1

ai +
m

∑
j=1

bj − 2 ∑
{(i,j)∈K}

xij (21)

Using this the artificial variables can be eliminated from the restricted primal. Note that since the first two
summations are simply constants they can be removed from the objective function. The factor of −2 can
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�
�

Figure 1: Maximum flow graph for the transportation problem.

also be eliminated, remembering to change minimisation to maximisation. This gives

∑
{(i,j)∈K}

xij → max

∑
{j|(i,j)∈K}

xij 6 ai for i 6 i 6 m

∑
{i|(i,j)∈K}

xij 6 bj for i 6 j 6 n

xij > 0 for (i, j) ∈ K

The form of this is simply a maximum flow problem for a graph as shown in Figure 25.1.4, to which the
Ford-Fulkerson algorithm can be applied.

Theorem 22 Every feasible solution to the restricted primal determines a unique flow f in the network N. Conversely,
every flow in N determines a feasible solution to the restricted primal, and in both cases

v( f ) = ∑
{(i,j)∈K

xij

Proof. Let X where (X)ij = xij be a feasible solution to the restricted primal, then construct the following
flow f (i, j) = xij with flows from/to the source and sink determined by the equations.

f (s, i) = ∑
{j|(i,j)∈K}

xij and f (j, t) = ∑
{i|(i,j)∈K}

xij

These equations guarantee conservation. Non-negativity follows from the non-negativity of the solution to
the transportation problem. For the source and sink the capacity constraints are met by construction. For
the other edges the capacities are infinite, so trivially these are not violates.

Conversely let f be a flow in a network N and set xij = f (i, j) for all (i, j) ∈ K. This is then a feasible solution
to the restricted primal as the capacity constraints ensure the constraint inequalities are satisfied.

In both cases
v( f ) = ∑

i∈I
f (s, i) = ∑

i∈I
∑

{j|(i,j)∈K
f (i, j) = ∑

(i,j)∈K
xij

�

From equation (21) a solution x is optimal (so ξ = 0) if and only if

∑
(i,j)∈K

xij =
m

∑
i=1

ai

noting that the problem is balanced so that ∑ ai = ∑ bj. Hence when inequality is found an optimal solution
to the restricted primal must be found so that the solution can be updated.
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Definition 23 When the Ford-Fulkerson Labelling Algorithm terminates (at ‘nonbreakthrough’) let

I∗ = {i ∈ I | i is labelled}

J∗ = {j ∈ J | j is labelled}

Lemma 24 At nonbreakthrough i ∈ I∗ ⇒ j ∈ J∗ for every (i, j) ∈ J.

Proof. When the optimal flow is reached f (i, j) is finite but the capacity of the edge (i, j) is infinity, therefore
whenever one of the producer vertices is labelled any consumer to which it is joined must also be labelled.�

Theorem 25 At nonbreakthrough an optimal solution to the dual of the restricted primal is given by

αi = 1 for i ∈ I∗

αi = −1 for i /∈ I∗

βj = −1 for j ∈ J∗

βj = 1 for j /∈ J∗

Proof. The proof is done in two stages. First of all
(

ff fi
)

is shown to be feasible, then secondly optimality
is shown by showing that the same objective function value is obtained in the restricted primal. However,
it is first necessary to find the dual to the restricted primal, which is

m

∑
i=1

αiai +
n

∑
j=1

β jbj → max

αi + β j 6 0

αi 6 1 for i ∈ I

β j 6 1 for j ∈ J

Clearly the proposed solution satisfies the last two constraint inequalities. Now, for (i, j) ∈ K

• If i /∈ I∗ then αi = −1 so the first constraint inequality is satisfied whichever value βj takes.

• If i ∈ I∗ then αi = 1 and by Lemma 24 j ∈ J∗ so that βj = −1 and the first constraint inequality is
satisfied.

Hence this solution is feasible.

Calculating the value of the objective function for this solution gives

g
(

ff, fi
)

= ∑
i∈I∗

ai − ∑
i/∈I∗

ai + ∑
j∈J∗

bj − ∑
j/∈J∗

bj (26)

Consider now the objective function of the restricted primal

ξ = ∑
i∈I

ai + ∑
j∈J

bj − 2v( f ) (27)

Let f be the maximal flow as found by the Ford-Fulkerson algorithm. Therefore

v( f ) = ∑
i∈I

f (s, i) by definition

= ∑
i∈I∗

f (s, i) + ∑
i/∈I∗

f (s, i)
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Now, if i /∈ I∗ then vertex i was not labelled, meaning that the edge (s, i) is saturated. Hence

= ∑
i∈I∗

f (s, i) + ∑
i/∈I∗

ai

= ∑
i/∈I∗

ai + ∑
i∈I∗

∑
j∈J

(i,j∈K)

f (i, j) by conservation

= ∑
i/∈I∗

ai + ∑
i∈I∗

 ∑
j∈J∗

(i,j)∈K

f (i, j) + ∑
j/∈J∗

(i,j)∈K

f (i, j)


= ∑

i/∈I∗
ai + ∑

i∈I∗
∑
j∈J∗

(i,j)∈K

f (i, j) by Lemma 24

= ∑
i/∈I∗

ai + ∑
j∈J∗

(i,j)∈K

∑
i∈I∗

f (i, j)

= ∑
i/∈I∗

ai +

 ∑
i∈I∗

(i,j)∈K

f (i, j) + ∑
i/∈I∗

(i,j)∈K

f (i, j)

 because the second summation is zero

= ∑
i/∈I∗

ai + ∑
j∈J∗

∑
i∈I

f (i, j)

= ∑
i/∈I∗

ai + ∑
j∈J∗

f (j, t) by conservation

= ∑
i/∈I∗

ai + ∑
j∈J∗

bj

This last step is made for the following reason: As the Ford-Fulkerson algorithm has terminated t was
not labelled. Therefore all edges (j, t) must be saturated. Substituting into equation (27) and comparing to
equation (26) gives

ξ = ∑
i∈I

ai + ∑
j∈J

bj − 2

∑
i/∈I∗

ai + ∑
j∈J∗

bj

 = g
(

ff, fi
)

Hence by the strong duality theorem the suggested solution is optimal. �

Having found an optimal solution to the dual of the restricted primal the next step is to find θ and modify
the solution to the primal.

• αi + βj 6 0 for all (i, j) /∈ K means that the primal is infeasible, but this is impossible for the trans-
portation problem.

• There exists (i, j) ∈ K such that αi + βj > 0 so that

θ = min

{
cij − αi − β j

αi + βj
| αi + βj > 0

}
= min

{
cij − αi − β j

αi + βj
| i ∈ I∗, j /∈ J∗

}
(28)
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Demands
Capacities 45 20 30 30

35 8 6 10 9
50 9 12 13 7
40 14 9 16 5

Table 2: Transportation costs for Example 33.

The updated solution, ß, is now given by

αi := αi + θαi =

αi + θ if i ∈ I∗

αi − θ if i /∈ I∗
(29)

β j := β j + θβj =

βi − θ if j ∈ J∗

β j + θ if j /∈ J∗
(30)

Theorem 31 For all (i, j) ∈ K if xij > 0 then α∗i + β∗j = cij.

This theorem means that edges which carry flow at nonbreakthrough never become inadmissible in subse-
quent iterations. The whole of the above process may be formulated as an algorithm.

Algorithm 32 (Alphabeta) For a transportation problem with inputs ai, bj and cij:

1. Put αi = 0 for i 6 i 6 m and β j = min{cij | 1 6 i 6 m} for all 1 6 j 6 n.

2. Let K = {(i, j) ∈ I × J | αi + β j = cij}.

3. Use the Ford-Fulkerson algorithm to solve the maximum flow problem where the admissible edges are those in
K.

4. If ∑(i,j)∈K xij = ∑m
i=1 ai then x is an optimal solution.

5. Otherwise let I∗ and J∗ be the sets of vertices labelled at nonbreakthrough. Find θ as given by equation (28),
update (ff, fi) as given by equations (29) and (30) and goto 2.

This apparently convoluted process is in fact rather easy to follow in practise, as is shown by the following
example.

Example 33 Solve the transportation problem given in Table 25.1.4.

Proof. Solution Initially ff = 0 and β j is the minimum of column j, so fiT =
(

8 6 10 5
)

. Clearly
αi + β j = cij in precisely those cells which determined the values of fi so that

K = {(1, 1), (1, 2), (1, 3), (3, 4)}

Hence for the first iteration the maximum flow problem is as shown in Figure ??. Rather than run the Ford-
Fulkerson algorithm beginning from the zero flow the exhibited flow is trivial to construct. Starting from
the zero flow is largely to allow machines to perform the algorithm. Running the Ford-Fulkerson algorithm
on this network, the algorithm terminates and I∗ = {2, 3} and J∗ = {4}. Hence

θ = min
{ cij − αi − β j

2
| i ∈ I∗, j /∈ J∗

}
= −min

{
1
2

, 3, 3,
3
2

,
3
2

, 3
}

=
1
2

The solution is now updated, and it is most convenient to display this in tabular form as shown in Table
25.1.4, marked as ff′ and fi′.
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45 20 30 30 ff′ ff′′

35 8 6 10 9 −1
2

−3
2

50 9 12 13 7 1
2

3
2

40 14 9 16 5 1
2

3
2

fi′ 17
2

13
2

21
2

9
2

fi′′ 15
2

15
2

21
2

7
2

Table 3: Transportation table & intermediate dual solutions for Example 33.

Now beginning the next iteration

K = {(1, 1), (1, 2), (1, 3), (2, 1), (3, 4)}

Again the Ford-Fulkerson algorithm is run, as shown in the central diagram of Figure ??. This gives I∗ =
{2, 3} and J∗ = {1, 4}. Hence

θ = min

{
12− 13

2 −
1
2

2
,

9− 13
2 −

1
2

2
,

16− 21
2 −

1
2

2

}
= 1

This gives the new solution shown in Table 25.1.4 as ff′′ and fi′′. For the third iteration

K = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 2), (3, 4)}

This gives rise to the right hand diagram in Figure ?? from which it is clear that ∑(i,j)∈K xij = ∑m
i=1 ai and so

an optimal solution is found. �

(25.2) Other Efficiently Solvable Problems

(25.2.1) The Shortest Path Problem

Definition 34 Let Γ = (V, E, d) be a weighted digraph where d : E → R. The direct distances matrix of Γ is then
given by

aij =


d(vi, vj) if(vi, vj) ∈ E

∞ if (vi, vj) /∈ E and i 6= j

0 if (vi, vj) /∈ E and i = j

Definition 35 Let Γ = (V, E, d) be a weighted digraph and let p = (vi1 , vi2 , . . . , vik
) be a path in Γ. Define the weight

of p, d(p) as

d(p) =
k−1

∑
j=1

d(vij , dij+1 )

The shortest path between two vertices has the obvious definition. It is worth noting problems that may
occur when negative cycles exist in a graph. Using a negative cycle it is possible to construct a path of
arbitrarily low weight. As following theorems will show, the situation is thus

• The shortest path problem does not, in general, have a solution.

• The shortest elementary path problem always has a solution.

• When there are no negative cycles the shortest path problem and the shortest elementary path prob-
lem have the same solution.
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Theorem 36 In every digraph whenever a uv path exists, a shortest uv path exists.

Proof. In an elementary path no repetition of vertices occurs, so as V is finite there are only finitely many
uv paths. There must, therefore, be at least 1 shortest such path. �

Theorem 37 In a weighted digraph with no negative cycles if a uv path exists then there is a shortest uv path, and at
least one shortest uv path is elementary.

Proof. Suppose p is a shortest uv path that is not elementary and let p′ be obtained from p by removing
cycles on p. Certainly p′ is elementary and since edges have been removed d(p′) 6 d(p). �

Definition 38 The shortest distances matrix A∗ for a weighted digraph is defined as

a∗ij =

the length of the shortest vivj path, if it exists.

∞ otherwise

Definition 39 (Shortest Distances Problem) Given a direct distances matrix A for a weighted digraph find the shortest
distances matrix A∗, or show that there exists negative cycles in the graph.

Dijkstra’s algorithm, as given in Chapter ?? provides a way to find the shortest distance between one par-
ticular vertex and all other vertices, but requires non-negative weights. By increasing the efficiency from
O(m2) to O(m3) the shortest distance between all nodes can be found, and the weights can be in R.

Define a sequence of m×m matrices ∆(p) such that ∆(p)
ij is the shortest vivj path that does not pass through

the vertices vp, vp+1, . . . , vm except for vi and vj so that ∆(1) = A and ∆(m+1) = A∗.

To calculate this sequence of matrices a recurrence relation is required. Let q be the shortest vivj path not
containing vp+1, vp+2, . . . , vm (except vi and vj), which may be assumed to be elementary by Theorem 37.
Then either

• If q passes through vp then it is a composition of two paths: a vivp path with vertices from {v1, v2, . . . , vp−1}
and a vpvj path with vertices from the same set. Hence

∆(p+1)
ij = ∆(p)

ip + ∆(p)
pj

• If q does not pass through vp then ∆(p+1)
ij = ∆(p)

ij .

The required recurrence is, therefore

∆(p+1)
ij = min

(
∆(p)

ij , ∆(p)
ip + ∆(p)

pj

)
(40)

At iteration p each element must be compared with the sum of its projection into row p and its projection
into column p.

Now, a negative cycle is identified precisely when ∆(p)
ii < 0. It may therefore be assumed that if the algorithm

is still running then ∆(p)
ii > 0 so that in row p the comparisons must give

∆(p+1)
pi = min

(
∆(p)

pj , ∆(p)
pp + ∆(p)

pj

)
= ∆(p)

pj

Similarly for column p, so row and column p are copied from ∆(p) to ∆(p+1).

A method for finding the matrix A∗ may now be constructed (this is done in Algorithm 41) but A∗ only
gives the weight of the shortest distance: what is the shortest path? For this purpose define the auxiliary
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matrix E such that eij is the greatest index of the intermediate nodes on the shortest vivj path. E may be

found by initialising it to the null matrix then setting eij = p if ∆(p)
ip + ∆(p)

pj < ∆(p)
ij . E is used to construct

the shortest path iterating on the relationship that the shortest path between vi and vj contains only vertices
numbered less than eij.

Algorithm 41 (Floyd) Given a direct distances matrix A:

1. It at any point ∆ii < 0 then stop: a negative cycle has been found.

2. For all i and all j (1 6 i 6 m and 1 6 j 6 m) do ∆ij := aij and eij := 0.

3. For

(a) 1 6 p 6 m

(b) 1 6 i 6 m and i 6= p

(c) 1 6 j 6 m and n 6= p

If ∆ip + ∆pj < ∆ij then ∆ij := ∆ip + ∆pj and eij := p.

Theorem 42 Floyd’s algorithm solves the shortest path problem in O(m3) operations.

Proof. In step 2 there are O(m2) assignments. In step 3 there are 4 operations, and parts (a), (b), and (c) there
are performed m(m− 1)(m− 1) times, giving a total of O(m3). �

Example 43 Find the shortest v1v4 path in the weighted digraph with direct distances matrix

A =


0 5 2 7
6 0 9 2
3 1 0 4
−3 1 −1 0


Proof. Solution Using Floyd’s algorithm

A →


0 5 2 7
6 0 8 2
3 1 0 4
−3 1 −1 0

→


0 5 2 7
6 0 8 2
3 1 0 3
−3 1 −1 0

→


0 3 2 3
6 0 8 2
3 1 0 3
−3 0 −1 0

→


0 3 2 5
−1 0 1 2
0 1 0 3
−3 0 −1 0


while

E →


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

→


0 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0

→


3 0 3 0
0 0 1 0
0 0 0 2
0 3 0 0

→


3 0 3 0
4 0 4 0
4 0 0 2
0 3 0 0


From A∗ the shortest v1v4 path has weight 5, and from E the path is of the form v1, . . . , v3, . . . , v4. But there
are no intermediate vertices on the shortest v1v3 path (from e13 = 0) and so since e34 = 2 this path must
actually be of the form v1, v3, . . . , v2, . . . , v4. But e32 = 0 = e24 so the shortest v1v4 path is v1, v3, v2, v4. �

(25.2.2) The Greedy Algorithm

While the greedy algorithm is an obvious way to try so solve a problem, it is frequently the case that it does
not work. What problems, then, does the greedy algorithm solve?
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The Minimal Spanning Tree Problem

In Chapters ?? and ?? it has been shown that the greedy algorithm solves the minimal spanning tree problem.

Definition 44 (Minimal Spanning Tree Problem) Given a weighted connected graph Γ = (V, E) with weight function
w : E → R find a spanning tree T = (V, E∗) of Γ such that e(E∗) = ∑e∈E∗ w(e) is minimal.

Definition 45 (Maximum Weight Spanning Forest Problem) Given a weighted graph Γ = (V, E) with weight function
w : E → R find a spanning forest∗ T = (V, E∗) of Γ such that e(E∗) = ∑e∈E∗ w(e) is maximal.

The minimal spanning tree problem can be solved as a maximal weight forest problem by means of a few
modifications to the problem. Let Γ = (V, E) be a graph with weight function w : E → R and let T = (V, E∗)
be a minimal spanning tree. Observe that

• If the new weight function w′ is defined as w′(e) = w(e) + k then for any spanning tree (V, E1),
w′(E1) = (|E1| − 1)w(E1). Therefore any minimal spanning tree remains a minimal spanning tree.

• If the new weight function w′ is defined as e′(e) = −w(e) then for any spanning tree (V, E1), w′(E1) =
−w(E1). Therefore a minimal spanning tree with respect to w is maximal with respect to w′.

• Let
W = max

e∈E
w(e)

then if T is a minimal spanning tree with respect to W then it is a maximal spanning tree with respect
to the new weight function w′ defined by w′(e) = W − w(e)

(25.2.3) Independence Systems & Matroids

Independence Systems

Definition 46 The pair S = (E,F ) is an independence system if

• E is a finite set called the background set.

• F is a family of subsets of E that is closed under inclusion, i.e. if A ∈ F and A′ ⊆ A then A′ ∈ F .

Definition 47 Let Γ = (V, E) be a graph, then M ⊆ E is a matching in Γ if ∀e, f ∈ M e ∩ f = ∅.

So in a matching no two edges have a common vertex. This definition is used to form a particular class of
independence system: Particular classes of independence system are of interest.

Class 1: Let Γ = (V, E) be an acyclic graph and let A = {A ⊆ E | (V, A) is acyclic} then clearly (E,A) is an
independence system. Note that |A| 6 |V| − p where Γ has p connected components.

Class 2: Let Γ = (V, E) be a graph and letM = {M ⊆ E | M is a matching} then (E,M) is an independence
system since any subset of a matching is a matching. Since in a matching there can be at most

⌊
|V|
n

⌋
it must be the case that |M| 6

⌊
|V|
n

⌋
.

Class 3: Let E be the set of all cells in an m×m matrix A. Let I ∈ I if and only if I is a set of independent
cells of A, the clearly (E, I is an independence system. Clearly |I| 6 m.

∗A forest is a collection of trees which form the connected components of a graph. A spanning forest is therefore the
trees which span each connected component.
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Class 4: Let A be a real m× n matrix and let C be the set of column indices of A. Define

L = {X ⊆ C | columns with indices from X are linearly independent}

then (C,L) is an independence system. Clearly X is less than or equal to the rank of A.

Definition 48 (The Combinatorial Optimisation Problem Of An Independence System) Let S = (E,F ) be an inde-
pendence system and w : E → R+ then the combinatorial optimisation problem associates with S is to find an inde-
pendent set of the greatest total weight, i.e. to find X∗ ∈ F such that

w(X∗) = max
X∈F

w(X)

Algorithm 49 (Greedy) Given an independence system S = (E,F ), and weight function w : E → R+ find X∗ ∈ F
such that w(X∗) is maximal.

1. X∗ := ∅.

2. Find e ∈ E such that w(e) = maxz∈E w(z).

3. E := E \ {e}.

4. If X∗ ∪ {e} ∈ F then X∗ := X∗ ∪ {e}.

5. If E = ∅ then stop, else goto 2.

Theorem 50 Let S = (E,F ) be an independence system, then the following are equivalent.

1. The Greedy algorithm correctly solves every combinatorial optimisation problem associated with S for any
weight function.

2. If F, F′ ∈ F and |F′| = |F|+ 1 then there is an element e ∈ F′ \ F such that F ∪ {e} ∈ F . This is called the
exchange proposition.

3. If A ⊂ E and F and F′ are maximal independent subsets of A then |F| = |F′|. This is called the rank
proposition.

Proof. 1⇒2 Equivalently, it is shown that ¬2 ⇒ ¬1. Suppose that F, F′ ∈ F with |F| = p, |F′| = p + 1 and
for every e ∈ F′ \ F F ∪ {e} /∈ F . Define w : E → R as follows.

w(e) =


p + 2 for e ∈ F

p + 1 for e ∈ F′ \ F

0 for e /∈ F ∪ F′

Running the Greedy algorithm will then do the following

1. Accept all elements of F.

2. Reject all elements of F′ \ F because by hypothesis @e ∈ F′ \ F such that F ∪ {e} ∈ F .

3. Possibly accept some elements of E \ (F ∪ F′).

The weight of the found set, X∗ is then

w(X∗) = p(p + 2) + 0 = p2 = 2p

But
w(F′) = (p + 1)(p + 1) = p2 + 2p + 1 > w(X∗)

Since F′ is an independent set this is a contradiction, so the result is shown.
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2⇒3 Suppose that F and F′ are maximally independent subsets of A and that |F| < |F′|. Take any F′′ ⊆ F′

such that |F′′| = |F|+ 1. Since F′ ∈ F , F′′ ∈ F and by hypothesis ∃e ∈ F′′ \ F such that F ∪ {e} ∈ F .
Certainly F ∪ {e} ⊆ A and F 6= F ∪ {e}, but this contradicts that F was maximally independent.

3⇒1 Let w : e → R be an arbitrary weight function and suppose that the Greedy algorithm finds the solu-
tion F = {e1, e2, . . . , er}. Let F′ = {e′1, e′2, . . . , e′s} be an optimal solution—one exists by the finiteness
of E.

By construction F is maximal independent, and although F′ may not be maximal it is independent
and only edges of zero weight can be added. Without loss of generality assume, therefore, that F′

is extended in this way to be a maximal independent set. Hence by hypothesis |F| = |F′|, so r = s.
Certainly w(F′) > w(F) because F′ is optimal and so has maximal weight. Without loss of generality
assume that

w(e1) 6 w(e2) 6 · · · 6 w(er)

and w(e′1) 6 w(e′2) 6 · · · 6 w(e′r)
(51)

Now, since e1 is chosen by the Greedy algorithm is must have maximal weight, and therefore w(e1) >

w(e′1). Suppose that w(ei) > w(e′i) for 1 6 i 6 k− 1.

– Suppose that
w(ek) < w(e′k) (52)

and let
A = {e ∈ E | w(e) > w(e′k)}

By the induction hypothesis and equations (51) |A| > k. Let F′′ = {e1, e2, . . . , ek−1} then by the
induction hypothesis F′′ ⊆ A. Furthermore F′′ is independent because F′′ ⊂ F and F ∈ F .
Now, F′ ∩ A ⊆ F′ and so is independent.

∗ Suppose that F′′ is not a maximally independent subset of A then ∃e /∈ F′′ such that F′′ ∪
{e} ∈ F and is also a subset of A. But therefore e ∈ A and so by the definition of A,
w(e) > w(e′k) > w(ek) by equation (52).

Let F̃ be the subset of F′′ at the stage when e was processed. F̃ ∪ {e} ⊆ F′′ ∪ {e} ∈ F
and so by independence F̃ ∪ {e} ∈ F . Since w(e) > w(ek) and e is feasible e would have
been chosen by the Greedy algorithm in preference to ek. But ek was chosen, so this is a
contradiction meaning that F′′ must be maximally independent.

Now, F′′ is maximally independent and |F′′| = k − 1. But F′ ∩ A is an independent set and
|F′ ∩ A| > k which contradicts the hypothesis. Therefore the assumption of equation (52) must
be false, and hence w(ek) > w(e′k).

Since w(ek) > w(e′k) the induction holds and so equations (51) show that w(F) > w(F′) and hence the
solution found by the Greedy algorithm is optimal. �

Definition 53 Let S = (E,F ) be an independence system.

1. An independence system satisfying one (and hence all) of the conditions of Theorem 50 is called a matroid.

2. For A ⊆ E the rank of A, r(A), is the size of the maximally independent subsets of A.

3. A maximally independent subset of a set A ⊆ E is called a basis for A.

Each of the 4 classes of independence system described earlier can now be examined for being a matroid.
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1. Let H ⊂ E be maximally independent, then it corresponds to a maximal acyclic subgraph. But this
is precisely (“if and only if”) a spanning forest which always has |V| − p elements where the forest
has p connected components. Hence rank proposition holds, so this class of independence system is
a matroid. This kind of matroid is denoted Gr(Γ).

2. Consider the graphs shown in Figure ??. From the graph on the left take the subgraph on the right,
which has two matchings as shown. Both matchings are maximally independent in this subgraph
but contain differently many elements. Hence the rank proposition does not hold and this is not a
matroid.

3. Consider a 4× 4 matrix with ij entry aij. Taking the subset of entries {a11, a12, a21} there are two max-
imal independent subsets {a11} and {a12, a21} that are of unequal size. Hence the rank proposition
does not hold, so this is not a matroid.

4. From linear algebra, every maximally independent set of columns has the same size, namely the rank
of the matrix. So by the rank proposition this is a matroid.

Definition 54 Let A be an m× n matrix over a field K and let A′ be the set of column indices of A. Then where

LA = {X ⊆ A′ | columns with indices from X are linearly independent}

the independence system (A′,LA) is a matroid, denoted M(A).

Definition 55 Independence systems S + (E,F ) and S′ = (E′,F ′) are isomorphic, written S ≈ S′, if there exists a
bijection φ : E → E′ such that F ∈ F ⇔ φ(F) ∈ F ′.

Definition 56 A matroid S is called a matric matroid if there exists a matrix A over an appropriate field for which
S ≈ M(A). Similarly S is said to be a graphic matroid if there exists a graph Γ such that S ≈ Gr(Γ).

(25.3) Hard Problems

(25.3.1) Classifying Problems As ‘Hard’

When assessing the computational complexity of algorithms the complexity is expressed as a function of
the size of the input to the algorithm. If the function is polynomial then the problem is efficiently solv-
able. Exponential and factorial expressions increase so quickly that increasing the length of input causes a
remarkable increase in the operations needed.

Efficient therefore means polynomial and hard means not polynomial. For a particular problem it is possible
that no polynomial algorithm is known, but this does not mean that no polynomial algorithm exists. An
example of this is the problem of finding a Hamiltonian cycle in a graph. In fact it cannot even be shown
that no polynomial algorithm exists. There follows definitions of problems that currently have no known
polynomial algorithm.

Definition 57 (Integer Linear Programming) Given an integer matrix A and integer vectors b and c find an integer
vector x which solves the optimisation problem

cTx → max

Ax = b

x > 0

This problem reduces to normal linear programming when the integer requirement is omitted. The integer
problem remains hard even when A has only one row.
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Definition 58 (Integer Knapsack) Given integers a1, a2, . . . , an and K find integers x1, x2, . . . , xn such that ∑n
i=1 aixi =

K.

The problem can be simplified further by considering only xi ∈ {0, 1}, so the problem is to find S ⊆
{1, 2, . . . , n} such that ∑i∈S ai = K. This is still a hard problem which is called 0-1 Knapsack.

Definition 59 (Satisfiability Of Boolean Functions) A boolean formula f (x1, x2, . . . , xn) is satisfiable if there exists
x∗1 , x∗2 , . . . , x∗n ∈ {0, 1} such that f (x∗1 , x∗2 , . . . , x∗n) = 1.

Note that is is required that f be in conjunctive normal form, so that f = c1 ∧ c2 ∧ · · · ∧ ck where cj is a function of
x1, x2, . . . , xn that involves only ‘or’ and negation and at most one of each of xi and ¬xi is used.

(25.3.2) Class NP

Computational Complexity

The computational complexity of an algorithm may be expressed as a function of either the number of
parameters in the input, L1, or the number of symbols in the input, L2. Needless to say L2 > L1, and
moreover where A is an algorithm and

cc(A) = f (L1) = g(L2)

then for all x, g(x) 6 f (x).

• If f is bounded by a polynomial function then A is called strongly polynomial.

• If g is bounded by a polynomial function then A is called polynomial.

In order to simplify proceedings consider only problems with integer entries.

Recognition Problems

Recognition problems have output that is either “yes” or “no”. The satisfiability of a boolean formula
is clearly such a formula, as is determining whether a graph contains a Hamilton cycle. However the
maximum clique problem is not a recognition problem.

Most problems have a recognition version, i.e. a version that is a recognition problem. This is generally
done by asking “does a solution exist?” so for example the maximum clique problem transforms to the
following

• Given a graph Γ and k ∈ N does there exist a subgraph Γ∗ of Γ with r vertices where r > k.

In order to simplify proceedings consider only recognitions.

Definition 60 LetR be the class of recognition problems with integer entries. Furthermore define for a problem A ∈ R

• inst(A) to be the class of all instances of A.

• tinst(A) to be the class of all true instances of A i.e. those instances where the solution is “true”.

• alg(A) to be the set of all algorithms that correctly solve A.

• Σ to be the alphabet for the problem A, so that all problems, instances and algorithms are expressed as strings
of symbols from Σ.
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• Σ∗ to be the set of all strings of symbols of Σ.

• |x| to be the length of the string x ∈ Σ∗.

• $ to be a distinguished element of Σ.

If A ∈ alg(A) then let op(A, x) be the number of operations necessary to perform A when applied to x.

Definition 61 For A ∈ R and A ∈ op(A) define

• cc(A) = sup {op(A) | x ∈ inst(A), |x| = L} = f (L).

• cc(A) = infA∈alg(A) cc(A).

An algorithm A is called polynomial of there exists a polynomial p such that f (z) = O(p(z)), so define the class of
polynomially solvable problems

P = {A ∈ R | ∃A ∈ alg(A) with A polynomial}

Checking Solutions

Even if a problem is hard it may be very easy to verify a solution. To determine whether 267 − 1 is prime is
very hard indeed, yet verifying the solution

267 − 1 = 193, 707, 121× 761, 838, 257, 287

is quite easy, and can certainly be done polynomially. To simplify the proceedings consider only problems
to which a solution can be checked by a polynomial algorithm.

The problems satisfying the three restrictions are called the problems of class NP .

Definition 62 A problem is of class NP if it obeys the following criteria.

NP =
{

A ∈ R | ∃p ∃C ∀x ∈ Σ∗ x ∈ tinst(A) ⇔ ∃c(x) ∈ Σ∗, |c| 6 p(|x|) with x$c(x) C→ “true”
}

In this rather intricate definition c(x) is called a certificate and C is the (polynomial) algorithm that checks
that c(x) solves A. C must be supplies with both an input and an output that it may verify the validity of,
so c(x) is the output which depends on the input x. The expression “x$c(x)” is the concatenation of these
strings, separated by the distinguished character: the input taken by C.

Theorem 63 The problem to satisfy a boolean formula in conjunctive normal form is of class NP .

Proof. Let C(x1, x2, . . . , xn) be a boolean formula in conjunctive normal form that is satisfiable, observe that
it may have up to 2n literals. If there are k such clauses in a formula then the length of the input is L = 2kn.
Now

C ∈ sat() ⇔ ∃x∗1 , x∗2 , . . . , x∗n ∈ {0, 1} such that C(x∗1 , x∗2 , . . . , x∗n) = 1

The certificate is therefore x∗1 , x∗2 , . . . , x∗n which is of length O(n) 6 L. The verification algorithm simply
substitutes these values in and evaluates the resulting expression. Each clause will require at most 2n− 1
additions, n negations, k − 1 clauses will then have to be multiplied, and finally a check for equality to 1
will be made. This gives

cc(C) = k(2n− 1) + nk + k− 1 + 1 = 3nk =
3
2

L

Hence p(z) = 3
2 z and the definition is satisfied. �



25.3. HARD PROBLEMS 25

Theorem 64 The problem to detect the presence of a Hamilton cycle in a graph is of class NP .

Proof. The input is a graph Γ = (V, E) with |V| = m say. This will be encoded by the adjacency matrix, so
that L = m2. Now, Γ ∈ tinst() if and only if a Hamilton cycle exists in Γ.

Take as the certificate, therefore, a sequence of indices for the vertices, (i1, i2, . . . , im) such that the sequence
of corresponding vertices forms a Hamilton cycle. This certificate is of length m < L = m2. The algorithm
C must check that the certificate is an m-tuple of distinct numbers from 1 to m, and that (vi1 , vi2 , . . . , vim ) is a
Hamilton cycle by checking that the appropriate edges exist. This may be done as follows

1. (a) Check i1 6= i2, i1 6= i3 etc. which takes m− 1 comparisons.

(b) Check i2 6= i3, i2 6= i4 etc. which takes m− 2 comparisons.

(c) Continue, giving a total of ∑m−1
i=1 i = 1

2 m(m− 1) comparisons.

2. For 1 6 r 6 m− 1 check that {vir , vir+1 )} ∈ E.

3. Check that {vm, v1} ∈ E.

This gives
cc(C) = O(m2) + O(m) = O(m2) = O(L)

Hence p(z) = z and the definition is satisfied. �

Similarly the maximum clique problem, the travelling salesman problem, and the 0-1 knapsack problem are
all of class NP .

Theorem 65 P ⊆ NP .

It is not clear as to whether certain problems are of class NP , for example whether a number is prime.

Conjecture 66 P 6= NP
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