
Chapter 30

MSMYP1 Further Complex Variable

Theory

(30.1) Multifunctions

A multifunction is a function that may take many values at the same point. Clearly such functions are
problematic for an analytic study, though for the most part there is a convenient way to prevent their bad
behaviour. Unfortunately some functions of R→ R become multifunctions when extended to C, so first of
all these are dealt with.

(30.1.1) Arguments

Representing a complex number in the form z = reiθ , the argument of z is the number θ which gives the
angle (in radians) that a line segment connecting the origin to z makes with the positive real axis. For a
given complex number z = reiθ there are many arguments, namely θ ± 2kπ for k ∈ Z. Let

ARG(z) =
{

θ | z = reiθ
}

Any one of the elements of ARG(z) may be chosen for use, so let arg (z) ∈ ARG(z), which may also be treat
as a function

arg (z) : C \ {0} → R

arg (z) is called a choice for ARG(z), and no choice is a continuous function. This is simply demonstrated by
noting that any continuous function is continuous when restricted to any contour. Choosing the unit circle
as a contour,

γ : [0, 1)→ C defined by γ : t 7→ eit

Plotting the function arg (z) on a third axis (see Figure 30.1.1) there is clearly a discontinuity where the
function returns to the positive real axis.

The problems with the argument function occur when the positive real axis is crossed, and so can be solved
by removing the positive real axis from C. In fact any half-line can be removed, so define

Lα =
{

z ∈ C | z = reiα ∀r > 0
}

In the cut plane C \ Lα the choice
arg (z) ∈ (α, α + 2π)

is continuous.

1
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Figure 1: The argument function is not continuous.

(30.1.2) Logarithms

As complex numbers have expressions in terms of exponentials it is important that any definition of a
logarithm is consistent with this.

z = |z|ei arg (z)

= eln |z|ei arg (z)

= exp (ln |z|+ i arg (z))

Hence make the definition
lnz = ln|z|+ i arg (z)

The appearance of the argument function makes this a multifunction. Similarly to the argument, let

LOG(z) = {ln |z|+ iθ | θ ∈ ARG(z)}

However, in the cut plane C \ Lα, ln z is a sum of continuous functions and thus is continuous. In fact ln z
is analytic. Each possible cut of the complex plane gives rise to an analytic logarithm function, all of which
are different. It is therefore common to speak of an “analytic branch of the logarithm” corresponding to a
particular cut. Of course, it is most convenient to use the cut C \ L0.
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(30.1.3) Powers

For w, z ∈ C

zw = exp (w ln z)

and thus exponentiation is a multifunction. Obviously cutting the plant will eliminate this problem.

(30.2) Poles And Zeros

The zeros and poles of a function f : C→ C are of interest.

Suppose that f is analytic and has a zero at z0, then for some r > 0 f has a Taylor expansion about z0 on
Br(b0) as follows

f (z) = cm(z− z0)m + cm+1(z− z0)m+1 + . . .

= (z− z0)m
∞

∑
k=0

cm+k(z− z0)k

= (z− z0)mg(z)

where g is analytic on and has no zeros in Br(z0). When f can be expressed in this way it is said to have a
zero of order (or multiplicity) m at z0.

Similarly, if f has a pole of order (or multiplicity) n at p0 then it has a Laurent expansion on Br(p0 for some
r > 0, say

f (z) =
c−n

(z− p0)n +
c−n+1

(z− p0)n−1 + · · ·+ c−1
z− p0

+ c0 + . . .

=
1

(z− p0)n

∞

∑
k=0

c−n+k(z− p0)k =
g(z)

(z− p0)n

where g is analytic on and has no zeros in Br(p0).

Theorem 1 (Principle Of The Argument) Let U be an open simply connected domain and γ be a positively oriented
contour in U. If f : U → C is analytic on U except at finitely many points (poles) and has finitely many zeros in U
then

1
2πi

∫
γ

f ′(z)
f (z)

dz = N − P

where f has N zeros and P poles in U.

Proof. Let p1, p2, . . . , pk be the poles of f inside γ, with the ith having multiplicity ni. Let z1, z2, . . . , zl be the
zeros of f inside γ, with the jth having multiplicity mj. Choose r > 0 such that

f (z) = (z− zj)mjgj(z) ∀z ∈ Br(zj)

and f (z) = (z− pi)
−ni gl+i(z) ∀z ∈ Br(pi)

where each g is non-zero and analytic on its respective ball. As there are only finitely many poles and zeros,
r may be chosen small enough to make all the balls disjoint.
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Take any j (1 6 j 6 k) then in Br(zj)

f (z) = (z− zj)
mj gj(zj)

so f ′(z) = mj(z− zj)
mj−1 + (z− zj)

mj g′j(zj)

giving
f ′(z)
f (z)

=
mj

z− zj
+

g′j(z)

gj(z)

=
mj

z− zj
+ h(z)

where h is analytic on Br(zj). This function has a single pole at zj with residue mj. Similarly, take any i
(1 6 i 6 l) then in Br(pi)

f (z) = (z− pi)
−ni gl+i(zi)

so f ′(z) = −ni(z− pi)
−ni−1 + (z− pi)

−ni g′l+i(zi)

giving
f ′(z)
f (z)

=
−ni

z− pi
+

g′l+i(z)
gl+i(z)

=
ni

z− pi
+ h(z)

where h is analytic on Br(pi). This function has a single pole at pi with residue −ni. Now, poles of f ′(z)
f (z) can

occur only at poles of f ′ (which must be poles of f ) and zeros of f . Thus by Cauchy’s Residue Formula

1
2πi

∫
γ

f ′(z)
f (z)

dz =
k

∑
i=1
−ni +

l

∑
j=1

mj = N − P
�

Corollary 2 N − P =
1

2πi
4

gamma
arg f (z)

Proof.

N − P =
1

2πi

∫
γ

f ′(z)
f (z)

dz

=
1

2πi

∫ b

a

f ′(γ(t))
f (γ(t))

γ′(t) dt

=
1

2πi
[ln ( f (γ(t)))]ba

=
1

2πi
(ln | f (γ(b))|+ i arg ( f (γ(b)))− f (γ(a))|+ i arg ( f (γ(a))))

=
1

2πi
( arg ( f (γ(b)))− arg ( f (γ(a))))

=
1

2πi
4
γ

arg f (z)

where4γ arg f (z) denotes the change around γ of the argument of f (z). �

This corollary suggests why the theorem is called the “Principle Of The Argument”.

Applying a root-counting argument in fact allows a proof of the Fundamental Theorem of Algebra, a proof
normally in the realm of algebra. Firstly, a lemma.

Lemma 3 If h(z) = c1
z + c2

z2 + · · ·+ cn
zn for constants ci, then ∃R > 0 such that |h(z)| < 1 for z > R.
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Proof. Using first the triangle inequality,

|h(z)| 6 |c1|
|z| +

|c2|
|z|2 + · · ·+ |cn|

|z|n

6 max
16i6n

{|ci}
(

1
|z| +

1
|z|2 + · · ·+ 1

|z|n

)
6 max

16i6n
{|ci}

n
|z|

with the last line following when |z| > 1. Hence choosing R > max{1, n max{|ci|}} the result is obtained.�

Theorem 4 (Fundamental Theorem Of Algebra) If p(z) ∈ C[z] is of order n > 1 then p has precisely n zeros in C.
(More simply: C is algebraically closed.)

Proof. Let p(z) = a0 + a1z + · · ·+ anzn then p is entire. Write

p(z) = anzn(1 + f (z))

with f (z) =
an−1

an

1
z

+
an−2

an

1
z2 + · · ·+ a0

an

1
zn

By Lemma 3 ∃R > 0 such that |z| > R ⇒ | f (z)| < 1. But then 1 + f (z) 6= 0 and certainly z 6= 0 so that p
has no roots outside the contour |z| = R, and no roots on the contour either.

Now, 1 > | f (z)| = |(1 + f (z))− 1| so 1 + f (z) lies in the unit circle centred at 1. Therefore −π
2 < arg (1 +

f (z)) < π
2 and so

0 6

∣∣∣∣∣ 4|z|=R
(1 + f (z))

∣∣∣∣∣ 6 π

Applying the Principle Of The Argument, this must be an integer multiple of 2π, and thus is zero. Hence

4
|z|=R

p(z) = 4
|z|=R

( arg anzn) + 4
|z|=R

( arg (1 + f (z)))

= 4
|z|=R

arg anzn

= 4
|z|=R

arg an|z|neinθ

= 2nπ

By the Principle Of The Argument p has n roots and poles inside |z| = R, but as p has no poles it has n
zeros, all in C. �

Zeros and poles can also be counted by looking at the behaviour of functions on a contour. Where N f

denotes the number of zeros of f and Pf denotes the number of poles of f :

Theorem 5 (Generalised Rouché) Let U be a simply connected open domain and let γ be a positively oriented simply
connected closed contour in U. Let f and g be analytic on U, except for finitely many poles inside γ. If |g(z)| < | f (z)|
for all z on γ then

N f − Pf = N f +g − Pf +g

Proof. For functions f and g as described, consider

F =
f (z)

f (z) + g(z)
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Using the quotient rule

F′ =
( f + g) f ′ − ( f + g)′ f

( f + g)2 so
F′

F
=

( f +g) f ′−( f +g)′ f
( f +g)2

f (z)
f (z)+g(z)

=
f ′

f
− ( f + g)′

f + g

By the Principle Of The Argument (Theorem 1)

(N f − Pf )− (N f +g − Pf +g) =
1

2πi

∫
γ

F′

F
(6)

and thus it suffices to show that this integral is zero. Now, as |g(z)| < | f (z)|, |g(z)|
| f (z)| < 1 and so

F =
f

f + g
=

1
1 + g

f

If this is assumed real, then it cannot be negative and so it is safe to make a cut along the negative real axis
to make an analytic branch of the logarithm. Thus

∫
γ

F′

F
dz = [ln F]γ(b)

γ(a) = 0

(because logarithm has been made analytic), which follows from Cauchy-Goursat. Hence equation (6) gives
the required result. �

Corollary 7 (Rouché’s Theorem) Let U be a simply connected open domain and let γ be a positively oriented simply
connected closed contour in U. Let f and g be analytic on U. If |g(z)| < | f (z)| for all z on γ then N f = N f +g.

Proof. Obvious from equation (6). �

(30.3) Contour Integration

(30.3.1) Residues

Contour integration and its applications use Cauchy’s Residue Theorem (Theorem 9) heavily. To this end it
important to be able to calculate residues.

Definition 8 Let f be analytic on Br(a), except possibly at a. If ∑Z cn(z− a)n is the Laurent expansion of f about a
then the residue of f at a is c−1.

The following methods are available for calculating residues:

1. If f has a simple pole at a then Res ( f , a) = lim
z→a

(z− a) f (z).

2. If f (z) = g(z)
h(z) where g and h are analytic on Br(a), g(a) 6= 0, h(a) = 0, h′(a) 6= 0, and f has a simple pole

at a then
Res ( f , a) =

g(a)
h′(a)

3. If f (a) = g(a)
(z−a)m where g is analytic in Br(a) and g(a) 6= 0 then f has a pole of order m at a which has

residue
Res ( f , a) =

1
(m− 1)!

g(m−1)(a)

4. Calculate the Laurent expansion of f to find the coefficient of (z− a)−1.
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5. Calculate the integral c−1 =
1

2πi

∫
γ

f (z) dz.

The most frequently applicable of these is, unfortunately, the rather tedious method 4. To this end it is worth
noting the following expansions

1
1− z

=
∞

∑
n=0

zn ez =
∞

∑
n=0

zn

n!
sin z =

∞

∑
n=0

(− 1)nz2n+1

(2n + 1)!
cos z =

∞

∑
z=0

(− 1)nz2n

(2n)!

A useful trick with these is as follows:

cosec (πz) =
1

sin (πz)

=
1

πz− (πz)3

3! + (πz)5

5! − . . .

=
1

πz
1

1− (πz)2

3! + (πz)4

5! − . . .

=
1

πz
1

1−
(

(πz)2

3! −
(πz)4

5! + . . .
)

=
1

πz

∞

∑
n=0

(
(πz)2

3!
− (πz)4

5!
+ . . .

)n

=
1

πz
+

1
πz

(
(πz)2

3!
− (πz)4

5!
+ . . .

)
+

1
πz

(
(πz)2

3!
− (πz)4

5!
+ . . .

)2

+ . . .

from which the coefficient of z−1 can be calculated.

Contour integrals may easily be evaluated by use of the following theorem.

Theorem 9 (Cauchy’s Residue Theorem) Suppose that γ is a simple closed contour in a domain D, and let f be a
complex function which is analytic on D except at finitely many points, p1, p2, . . . , pk, all of which line in Int γ. Then

∫
γ

f (z) dz = 2πi
k

∑
i=1

Res ( f , pi)

There are a few common choices of contour, each useful for integrating certain kinds of function. These are
now examined by means of example.

(30.3.2) Semi-Circular Contours

Semi-circular contours are useful for evaluating real improper integrals of functions that behave badly at
certain points in R.

Example 10 Evaluate
∫ ∞

0

ln x
a2 − x2 dx (a > 0) by integrating round a suitable complex contour.

Proof. Solution Use the contour shown in Figure 2, where

1. γ1 is a contour along the positive real axis from ε to R, so on γ1 z = x.

2. γ2 is a semicircular contour centred at the origin and of radius R, so on γ2 z = Rei arg θ for 0 6 θ 6 π.

3. γ3 is a contour along the negative real axis from −R to −ε. Here, arg z = π so that on γ3 z = xeiπ .

4. γ4 is a semicircular contour centred at the origin and of radius ε, so on γ4 z = εeiθ for 0 6 θ 6 π.
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-

Im z
6

Re z

γ2
AK

γ1-γ3- γ4

Figure 2: Contour of integration for use in evaluating improper real integrals with singularities.

Refer to the whole contour as ΓR,ε and consider the function f (z) = ln x
a2−x2 . As a contour cannot cross a cut,

define an analytic branch of the logarithm function by cutting from the plane the negative imaginary axis,
so that arg z ∈

(
−π

2 , 3π
2

)
. The only pole lying inside the contour is at ia, and for it to lie inside the contour

it is required that ε < a < R. This pole has residue

Res ( f , ia) =
1

2ia

(
ln a + i

π

2

)
Now go about evaluating

∫
ΓR,ε

f (z) dz with the eventual aim of applying Theorem 9.

• On γ1 z = x so ∫
γ1

f (z) dz =
∫ R

ε

ln x
a2 + x2 dx = IR,ε, say

• On γ3 z = xeiπ so

∫
γ3

f (z) dz =
∫ z=−ε

z=−R

ln
(

xeiπ
)

a2 − x2e2iπ eiπ dx

= −
∫ x=ε

x=R

ln
(

xeiπ
)

a2 − x2 dx

=
∫ R

ε

ln
(

xeiπ
)

a2 − x2 dx

=
∫ R

ε

ln x + iπ
a2 − x2 dx

= IR,ε +
∫ R

ε

iπ
a2 + x2 dx

• On γ2 z = Reiθ for 0 6 θ 6 π so

∣∣∣∣∫
γ2

f (z) dz
∣∣∣∣ =

∣∣∣∣∣∣
∫ π

0

ln
(

Reiθ
)

a2 + R2e2iθ Reiθ dθ

∣∣∣∣∣∣
6
∫ π

0

∣∣∣∣∣∣
ln
(

Reiθ
)

a2 + R2e2iθ Reiθ

∣∣∣∣∣∣ dθ

=
∫ π

0

| ln R + iθ||Reiθ |∣∣a2 + R2e2iθ
∣∣ dθ
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Now, the denominator describes a circle centred at a2 and of radius R2. The minimum distance from
the origin to this circle occurs when the circle crosses the real axis near the origin. Since R2 > a2 this
gives

6
∫ π

0

| ln R + iθ||Reiθ |
R2 − a2 dθ

6
∫ π

0

(| ln R|+ θ)R
R2 − a2 dθ by the triangle inequality and since R > 0

6
∫ π

0

(| ln R|+ π)R
R2 − a2 dθ

=
π(| ln R|+ π)R

R2 − a2

→ 0 as R→ ∞

• On γ4 z = εeiθ for 0 6 θ 6 π so

∣∣∣∣∫
γ4

f (z) dz
∣∣∣∣ =

∣∣∣∣∣∣
∫ 0

π

ln
(

εeiθ
)

a2 + ε2e2iθ εeiθ dθ

∣∣∣∣∣∣
6
∫ π

0

∣∣∣∣∣∣
ln
(

εeiθ
)

a2 + ε2e2iθ εeiθ

∣∣∣∣∣∣ dθ

=
∫ π

0

| ln ε + iθ||εeiθ |∣∣a2 + ε2e2iθ
∣∣ dθ

Now, the denominator describes a circle centred at a2 and of radius ε2. The minimum distance from
the origin to this circle occurs when the circle crosses the real axis near the origin. Since a2 > ε2 this
gives

6
∫ π

0

| ln ε + iθ||εeiθ |
a2 − ε2 dθ

6
∫ π

0

(| ln ε|+ θ)ε
a2 − ε2 dθ by the triangle inequality and since ε > 0

6
∫ π

0

(| ln ε|+ π)ε
a2 − ε2 dθ

=
π(| ln ε|+ π)ε

a2 − ε2

→ 0 as ε→ 0

Hence by Theorem 9

2πi
1

2ia

(
ln a + i

π

2

)
= 2

∫ R

ε

ln x
a2 + x2 dx + i

∫ R

ε

π

a2 + x2 dx +
∫

γ2

f (z) dz +
∫

γ4

f (z) dz

Now, the left hand side is constant for all ε and R, thus so must the right hand side be. Hence taking the
limit as ε → 0 and R → ∞ this must converge. In particular the real and imaginary parts converge, and so
by equating real and imaginary parts

∫ ∞

0

ln x
a2 + x2 dx =

π

2a
ln a and

∫ ∞

0

1
a2 + x2 dx =

π

a �
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(30.3.3) Keyhole Contours

A keyhole contour is used to contain nearly all of the complex plane, with the ‘gap’ to make a cut.

Example 11 Let a ∈ C with 0 < Re a < 4 and a 6= 1, 2, 3. Evaluate
∫ ∞

0

xa−1

x4 + 1
dx.

Proof. Solution Consider f (z) = za−1

z4+1 and take an analytic branch of ‘powers’ by cutting the complex plane
along the positive real axis, so

za−1 = e(a−1) ln z ln z = ln |z|+ i arg z arg z ∈ (0, 2π)

f has 4 simple poles, each at a 4th root of −1, i.e., ωk = ei(2k+1) π
4 for k = 0, 1, 2, 3.

Res ( f , ωk) =
za−1

d
dz z4 − 1

∣∣∣∣∣
z=ωk

=
(

1
4

za−1z−3
)∣∣∣∣

z=ωk

=
(

1
4

zaz−4
)∣∣∣∣

z=ωk

=
−1
4

ωa
k

On γ1, z = x so ∫
γ1

f (z) dz =
∫ R

ε

xa−1

x4 + 1
dx = IR,ε, say

On γ3, z = xe2πi, so

∫
γ3

f (z) dz =
∫ ε

R

(
xe2πi

)a−1

x4e8πi + 1
e2πi dx = −

∫ R

ε

xa−1e2πia

x4 + 1
dx = −e2πia IR,ε

Note that as a /∈ Z the value of e2πia is not known. For example if a = 1
2 then the value of e2πia could be 1

or −1.

On γ2, z = Reiθ for 0 6 θ 6 2π so

∣∣∣∣∫
γ2

f (z) dz
∣∣∣∣ =

∣∣∣∣∣∣∣
∫ 2π

0

(
Reiθ

)a−1

R4e4iθ + 1
iReiθ dθ

∣∣∣∣∣∣∣
6
∫ 2π

0

R
∣∣∣e(a−1) ln Re(a−1)iθ

∣∣∣
R4 + 1

dθ

=
∫ 2π

0

Re( Re (a)−1) ln R
∣∣∣ei Im (a) ln R

∣∣∣ e− Im (a)θ
∣∣∣eiθ( Re (a)−1)

∣∣∣
R4 + 1

dθ

=
∫ 2π

0

RRRe (a)−1e− Im (a)θ

R4 + 1
dθ

=
RRe (a)

R4 − 1

∫ 2π

0
e− Im (a)θ dθ

→ 0 as R→ ∞ because Re (a) < 4
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Similarly
∫

γ4
f (z) dz→ 0 as ε→ 0. Hence by Theorem 9

−2πi
4

4

∑
i=1

ωi =
(

1− e2πia
)

IR,ε

from which the solution follows. �

(30.4) Infinite Series

Contour integration can also be used to sum infinite series of the form ∑∞
n=0 φ(n) and ∑∞

n=0 ( = 1)nφ(n)
where φ is a rational function.

Lemma 12 Let φ be a rational function with poles z1, z2, . . . , zk. Then

1. f (z) = π cot (πz)φ(z) has simple poles at each n ∈ Z and n /∈ {z1, z2, . . . , zk}, with residue φ(n).

2. f (z) = π cosec (πz)φ(z) has simple poles at each n ∈ Z and n /∈ {z1, z2, . . . , zk}, with residue (− 1)nφ(n).

Proof. Let

f (z) = π cot (πz)

=
π cos (πz)φ(z)

sin (πz)

then f has a simple pole for all n ∈ Z and n /∈ {z1, z2, . . . , zk}. Calculating the residues,

Res ( f , n) =
π cos (πn)φ(n)(
d
dz sin (πz)

)∣∣∣
z=n

= φ(n)

as required. Similarly for part (2). �

Lemma 13 Let ΓN be the square contour with vertices
(
±(N + 1

2 ),±i(N + 1
2 )
)

for N ∈ Z. Then both cot (πz) and
cosec (πz) are bounded on ΓN independently of N.

Proof. Omitted. �

Using this, ∣∣∣∣∫
ΓN

π cot (πz)φ(z) dz
∣∣∣∣ 6 M

∣∣∣∣∫
γN

φ(z) dz
∣∣∣∣× (length of ΓN

and this will approach 0 if lim
z→∞

Zφ(z) = 0 so that by Theorem 9

0 = ∑
n∈Z

n/∈{z1,...,zk}

φ(n) +
k

∑
i=1

Res (π cot (πz)φ(z), zi)

where the residues at the zi must each be calculated.
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(30.5) Conformal Mappings

(30.5.1) Angle Preserving Maps

A conformal map is a function of C → C which, roughly speaking, preserves local structure. However, on
a larger scale such a map can produce dramatic changes. For example, mapping a circle to the upper half
plane.

Theorem 14 Let G be an open subset of C and let f : G → C be analytic on G. Let γ1 and γ2 be two contours in G
that meet at a point z0. If f ′(z0) 6= 0 then f preserves the magnitude and direction of the angles between γ1 and γ2 at
z0.

Proof. By re-scaling the interval upon which γ1 and γ2 are defined it may be assumed that γ1(t0) = z0 =
γ2(t0). Also, by rotating the plane if necessary, it may be assumed that γ′2(t0) 6= 0. Now, the angle between
γ1 and γ2 at z0 is the angle between the tangents. Hence

angle between γ1 and γ2 at z0 = arg (γ′1(t0))− arg (γ′2(t0)) = arg
(

γ′1(t0)
γ′2(t0)

)
(15)

Similarly, the angle between the images of γ1 and γ2 under f at z0 is

arg
(

( f ◦ γ)′1(t0)
( f ◦ γ)′2(t0)

)
= arg

(
( f ′(γ1(t0))γ′1(t0)
( f ′(γ2(t0))γ′2(t0)

)
by applying the chain rule. But

f ′(γ1(t0) = f ′(z0) = f ′(γ2(t0) and f ′(z0) 6= 0

hence cancelling, this is the same as equation (15), and so the result is shown. �

This motivates the following definition.

Definition 16 Let G be an open subset of C and let f : G → C be analytic on G. f is conformal at z0 ∈ G if f ′(z0) 6= 0,
and conformal on G if f ′(z0) 6= 0 ∀z0 ∈ G.

Some common and useful conformal maps are as follows.

• f (z) = z + a for a ∈ C. This is a translation in the direction
−→
0a .

• f (z) = zeiα for α ∈ R. This is an anticlockwise rotation through angle α about the origin.

• f (z) = kz for k ∈ R+. This is a dilation centred at the origin.

• f (z) = 1
z . This is called an inversion, and it exchanges the inside and outside of the unit circle.

(30.5.2) Straight Lines, Circles, And The Möbius Transformation

Theorem 17 Let α, β ∈ C with α 6= β, and let λ ∈ R+. Then∣∣∣∣ z− α

z− β

∣∣∣∣ = λ

is the equation for a straight line or circle, and any straight line or circle has an equation of this form.

If λ = 1 then this is an equation for a straight line, otherwise the equation represents a circle.
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Definition 18 Let a, b, c, d ∈ C with ad− bc 6= 0 then the mapping

f : z 7→ az + b
cz + d

is called the Möbius transformation.

Clearly translations, rotations, dilations, and inversions are all kinds of Möbius transformation. All Möbius
transformations are conformal maps, as

f ′(z) =
ad− bc

(cz− d)2

Also, Möbius transformations are bijective, with inverse

f−1(w) =
b− dw
cw− a

Theorem 19 The image under a Möbius transformation of a straight line or circle is either a straight line or a circle.

Proof. Let L have equation z−α
z−β = λ for some α 6= β and λ ∈ R+. Let f (z) = az+b

cz+d with ad− bc 6= 0 and let
w = f (z) then

z =
dw− b
a− cw

substituting into the equation for L,

λ =

∣∣∣∣∣ dw−b
a−cw − α
dw−b
a−cw − β

∣∣∣∣∣
=
∣∣∣∣ (dw− b)− α(a− cw)
(dw− b)− β(a− cw)

∣∣∣∣
=
∣∣∣∣ (αc + d)w− (αa + b)
(βc + d)w− (βa + b)

∣∣∣∣ (20)

which is in the form of a straight line or circle, or some degenerate case. There are 4 cases to consider.

• Suppose that αc + d = 0 = βc + d. But α 6= β, therefore c = 0 = d. But then ad − bc = 0, which
contradicts that f is a Möbius transformation. Hence this case cannot occur.

• Suppose that αc + d 6= 0 6= βc + d then dividing through in equation (20),∣∣∣∣∣∣w−
αa+b
αc+d

w− βa+b
βc+d

∣∣∣∣∣∣ = λ

∣∣∣∣ βc + d
αc + d

∣∣∣∣∣∣∣∣w− f (α)
w− f (β)

∣∣∣∣ = λ

∣∣∣∣ βc + d
αc + d

∣∣∣∣
which is the equation of a straight line or circle.

• Suppose that αc + d 6= 0 = βc + d then equation (20) gives

|w− f (α)| =
∣∣∣∣ βa + b

αc + d

∣∣∣∣
which is the equation of a circle.

• Suppose that αc + d = 0 6= βc + d then equation (20) gives

|w− f (β)| = 1
λ

∣∣∣∣ αa + b
βc + d

∣∣∣∣
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which is the equation of a circle. �

The next obvious question is as to precisely which straight lines and circles can be sent where. A straight
line or circle is uniquely determined by three points so, as the next theorem shows, any straight line or circle
an in fact be sent to any other.

Theorem 21 For any pair of triples {z1, z2, z3} and {w1, w2, w3}with elements taken from C∪{∞} there is a unique
Möbius transformation f for which f (zi) = w1 for each of i = 1, 2, 3.

Proof. Choose w1 = 0, w2 = 1 and w3 = ∞. This can be done without loss of generality because Möbius
transformations are invertible, and so the transformation required by the theorem is then the composition
g−1 ◦ f where

z1
f→0

g← w1

z2
f→1

g← w2

z3
f→∞

g← w3

Suppose then that f (z) = az+b
cz+d , then it is required that

az1 + b
cz1 + d

= 0
az2 + b
cz2 + d

= 1
az3 + b
cz3 + d

= ∞

By the requirement from z1, b = −az1.
By the requirement from z3, d = −cz3.
Hence

f (z) =
az− az1
bz− bz3

Now using the requirement from z2,

1 =
a
c

z2 − z1
z2 − z3

which gives a value for a
c and hence

f (z) =
(

z2 − z3
z2 − z1

)(
z− z1
z− z3

)
Uniqueness follows since Möbius transformations are bijective. �

(30.5.3) Common Transformations

There are a number of common useful transformations. Moreover, these transformations can be combined
to produce more exotic transformations.

• To map the unit circle to the right half plane use f (z) = 1+z
1−z .

• To map the right half plane to the positive quarter plane first apply the power map f (z) =
√

z, then
rotate through an angle of π

4 by using the map g(z) = zei π
4 . The power map f (z) = za for a ∈ R+

‘fans’ the plane, either ‘opening’ or ‘closing’ it.

• The exponential map f (z) = ez has numerous uses.

– To map the horizontal strip {z | a < Im z < b} to the wedge {z | a < arg z < b}.
– To map the vertical strip {z | a < Re z < b} to the annulus {z | ea < |z| < eb}.
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When working with power maps it is very important to define an analytic branch of the logarithm. For
example, z 7→ ez will map {z | Re z < a} to the inside of the circle of radius ea but without the origin because
there is no room to make a cut in the plane without interfering with the set {z | Re z < a}. Furthermore, this
map cannot be inverted because once again, there is no room to make a cut in the plane in order to define
an analytic branch of the logarithm.

Of course, if there is no readily available map, then it is possible to find an appropriate transformation using
the method employed in the proof of Theorem 21.

(30.6) Analytic Functions

For a real valued function of a real variable, being differentiable limits somewhat the behaviour of a func-
tion. Similarly, for a complex valued function of a complex variable the condition of analycity admits certain
behavioural properties of the function. Analycity is a far more strict condition than differentiability for real
functions, and has some quite surprising consequences.

(30.6.1) Liouville’s Theorem

Theorem 22 (Liouville) If f is an entire function that is bounded, then f is constant.

Proof. Choose any a, b ∈ C and let M be an upper bound for f on C. Choose R > max{|a|, |b|} and let γ be
a the contour {z | |z| = R} then by Cauchy’s Integral Formula

| f (z)− f (b)| =
∣∣∣∣ 1
2πi

∫
γ

f (z)
z− a

dz− 1
2πi

∫
γ

f (z)
z− b

dz
∣∣∣∣

6
1

2π
sup
z∈γ

∣∣∣∣ f (z)
z− a

− f (z)
z− b

∣∣∣∣× length of γ by the ML-result

= R sup
z∈γ

∣∣∣∣ (z− b) f (z)− (z− a) f (z)
(z− a)(z− b)

∣∣∣∣
= R sup

z∈γ

| f (z)||a− b|
|z− a||z− b|

But R > 2 max{|a|, |b|} and so for z ∈ γ, |z− a| < R
2 and |z− b| < R

2 hence

6 R
M|a− b|(

R
2

)2

→ 0 as R→ ∞

Note that R can be let tend to infinity as f is entire and hence this holds for all R > 0. �

The name of the next theorem is a little misleading. It is in fact completely equivalent to Liouville’s Theorem:
one can be deduced from the other.

Theorem 23 (Generalised Liouville) Let f be entire and k ∈ N. f is a polynomial of degree at most k if and only if
∃M, K ∈ R+ such that | f (z)| 6 M|z|k for |z| > K.
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Proof. (⇒) Suppose that f is a polynomial of degree at most k. Then

f (z) = akzk + ak−1zk−1 + · · ·+ a0

so | f (z)| 6 |ak||z|k + |ak−1||z|k−1 + · · ·+ |a0| by the triangle inequality

6 M′
(
|z|k + |z|k−1 + · · ·+ 1

)
where M′ = max

16i6k
ai

6 M′(k + 1)|z|k for |z| > 1

= M|z|k

where M = M′(k + 1).

(⇐) Suppose that f is entire and that | f (z)| 6 M|z|k for |z| > K where M, K ∈ R+ and k ∈ N. Let
γR = {z | |z| = R} and R > K. Since f is entire it has a Taylor series expansion about any point
z ∈ C, so

f (z) =
∞

∑
n=0

anzn where an =
1

2πi

∫
γR

f (z)
zn+1 dz

Now, by the ML-result,

|an| 6
1

2π
sup
z∈γR

∣∣∣∣ f (z)
zn+1

∣∣∣∣× length of γR

6
1

2π

MRk

Rk+1 2πR

→ 0 as R→ ∞ for n > k

and this is valid for all R > 0 because f is entire. Hence f is a polynomial of finite degree of at most
k. �

(30.6.2) The Identity Theorem

The Identity Theorem is a particularly powerful result regarding the structure of analytic functions. Its proof
uses numerous analytical and topological results, which are now presented.

Definition 24 Let f be a complex function. Define Z( f ) = {z ∈ C | f (z) = 0}.

Assertion 25 Let G ⊆ C and h : G → C

1. If h is continuous then any limit point of Z(h) that is in G is in Z(h).

2. If G is open, h is continuous, and h(a) 6= 0 then ∃r > 0 such that h(z) 6= 0 for all z ∈ Br(a).

3. If G is open and A is a closed subset of G then G \ A is open.

4. If G is open, A ⊆ G, and L is the set of limit points of A in G, then L is closed.

5. If G is open, A is a closed subset of G, and B is a closed subset of A, then B is a closed subset of G.

6. If G is open and connected, and A is a subset of G that is both closed and open in G, then either A = G or
A = ∅.

Lemma 26 Let G be an open subset of C and let f : G → C be analytic. If a ∈ Z( f ) then a is either an interior point
or an isolated point.
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Proof. Take any a ∈ Z( f ) then since f is analytic on G ∃r > 0 such that f has Taylor expansion

f (z) =
∞

∑
n=0

an(z− a)n ∀z ∈ Br(a)

Since f (a) = 0 it is immediate that a0 = 0. Further, either

1. an = 0 for all n ∈N∪ {0}, or

2. there must be some minimal m (m > 0 by the preceding statement) such that am 6= 0 but aj = 0 for
j < m.

In the first case f (z) = 0 for all z ∈ Br(a) and hence Br(a) ⊆ Z(a), meaning that a is an interior point of Z(a).

In the second case,

f (a) = (z− a)m
∞

∑
n=0

an+m(z− a)n ∀z ∈ Br(a)

Let g(z) = ∑∞
n=0 an+m(z− a)n then g is analytic on Br(a) and therefore is continuous. Also, g(a) = am 6= 0.

But then ∃s > 0 with s 6 r such that g(z) 6= 0 for all z ∈ Bs(a) \ {a}. But f (z) = (z− a)mg(z) which is then
also non-zero on Bs(a) \ {a} and hence Z( f )∩ Bs(a) = {a} i.e., a is an isolated point of Z f . �

Corollary 27 If an analytic function f has an isolated zero at a then the zero is of finite multiplicity and f (z) =
(z− a)mg(a) where g(z) 6= 0 for z ∈ Bs(a) and g is analytic on G.

Proof. As in case 2 in the proof of Lemma 26 define g by

g(z) =

am if z = a
f (z)

(z−a)m if z 6= a
for z ∈ Bs(a)

then g is analytic (including at a), and is non-zero in Bs(a). �

Theorem 28 (Identity) Let G be an open and connected subset of C, and let f : G → C be analytic. If Z( f ) has a limit
point in G, then f is identically zero.

Proof. Let L be the set of limit points of Z( f ) that lie in G.
By Assertion 25 L ⊆ Z( f ) and is a closed subset of Z( f ) which is a closed subset of G. Therefore L is a closed
subset of G.

Take any z0 ∈ L, then z0 ∈ Z( f ). Since z0 ∈ L it is not an isolated point of Z( f ) and hence by Lemma 26 z0

is an interior point of Z( f ). But then ∃r > 0 such that Br(z0) ⊆ Z( f ). Now, every point of Br(z0) is a limit
point of Br(z0) and therefore Br(z0) ⊆ L, meaning that L is an open subset of G.

Hence L is both open and closed in G which is open and connected. Hence either L = G or L = ∅.

Now, by hypothesis Z( f ) has a limit point in G, therefore L 6= ∅. Hence L = G. But L ⊆ Z( f ) and therefore
Z( f ) = G, i.e., f is identically zero on G. �
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