
Chapter 34

Mathematical Models Of Statistics

(34.1) Survival Analysis

Consider a population where each member will be removed from the population (failed) at some time after
the ‘start’, for example due to failure or death. The survival time t is treat as a random variable T, which it
is necessary to model.

(34.1.1) The Model

Continuous Time

For continuous time let T have probability density function f (t), so that the distribution function is

F(t) =
∫ ∞

0
f (u) du

Definition 1 The survivor function S(t) for a population member is the probability that the population member has not
failed at time t. Thus

S(t) = Pr {T > t} = 1− F(t)

Definition 2 The hazard function h(t) for a population member is the probability of failure at time t, given that the
population member has not already died at time t. Thus

h(t) = lim
δt→0

Pr {t 6 T 6 t + δT | T > t}
δt

The definition of the hazard function clearly makes sense, though its functional form is quite useless.

Lemma 3 h(t) =
f (t)
S(t)

.

Proof. Using Bayes Theorem to work with the conditional probability,

lim
δt→0

Pr {t 6 T 6 t + δT | T > t}
δt

= lim
δt→0

Pr {t 6 T 6 t + δt}
Pr {T > t} δt

= lim
δt→0

F(t + δt)− F(t)
S(t)δt

=
1

S(t)
dF
dt

=
f (t)
S(t)

�

Corollary 4 h(t) = − d
dt

ln S(t).

1
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Proof. Simply note that S(t) = 1− F(t) to give

− d
dt

ln S(t) = − d
dt

ln (1− F(t)) =
f (t)
S(t)

as required. �

Sometimes it is convenient to use the integrated hazard function, which has the obvious definition,

H(t) =
∫ t

0
h(u) du = − ln S(t)

Discrete Time

Discrete time may occur when observations of the population are taken at certain intervals, yielding a count-
able set of measurement times t1, t2, . . . . In exact analogy with continuous time,

f (ti) = Pr {T = ti}

S(ti) = Pr {T > ti}

h(ti) = Pr {T = ti | T > ti}

Clearly
S(ti) = ∑

t>ti

f (t)

and using Bayes Theorem

h(ti) =
Pr {T = ti}
Pr {T > ti}

=
f (ti)
S(ti)

The following result is also available.

Lemma 5 S(ti) = ∏
t<ti

1− h(t).

Proof. First of all observe that

S(ti) = Pr {T > ti}

= Pr {T = ti}+ Pr {T = ti+1}+ . . .

= f (ti) + f (ti+1) + . . .

Hence

h(ti) =
f (ti)

f (ti) + f (ti+1) + . . .

1− h(ti) =
f (ti+1) + f (ti+2) + . . .

f (ti) + f (ti+1) + . . .

∏
t<ti

1− h(t) =
(

f (ti) + f (ti+1) + . . .
f (ti−1) + f (ti) + . . .

)(
f (ti−1) + f (ti) + . . .

f (ti−2) + f (ti−1) + . . .

)
. . .
(

f (t2) + f (t3) + . . .
f (t1) + f (t2) + . . .

)
=

f (ti) + f (ti+1) + . . .
f (t1) + f (t2) + . . .

= f (ti) + f (ti+1) + . . .

= S(ti)

as required. �
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Corollary 6 f (ti) = h(ti) ∏
t<ti

1− h(t).

Proof. Use the preceding Lemma with f (ti) = S(ti)h(ti). �

Estimation Of The Survivor Function

Trivially, the survivor function may be estimated by

S̃(t) =
Number still surviving at time t

Size of original population

However, this assumes that the failure times of each populant has been observed. In realistic situations
many of the data may censored: after some time the populant is no longer available for observation, though
failure has not occurred. For example in a medical trial some subjects may cease to attend, or the trial
may finish before all participants have ‘failed’. This is so frequently the case that censored data cannot be
ignored.

Assume that failures occur at exactly the times t1 < t2 < · · · < tr but that censorings occur at some
intermediate times. Let n be the population size, suppose that dj failures occur at time tj and let nj be the
number of remaining populants immediately before this time. Hence

Pr
{

failure at time tj − δt
}

=
dj

nj

Hence

Pr
{

survival in time interval (tj−1, tj]
}

= 1−
dj

nj
=

nj − dj

nj

Hence the survivor function mat be estimated by

Ŝ(t) =

1 if t < t1

∏{j|tj<t}
nj−dj

nj
otherwise

This is known as the Kaplan-Meier estimator. Next its standard error is calculated.

Theorem 7 sterr
(
Ŝ(t)

)
=

√√√√(Ŝ(t))2 ∑
{j|tj<t}

dj

nj − dj
.

Proof. Let p̂j = nj−dj
nj

then

ln Ŝ(t) = ∑
{j|tj<t}

ln p̂j

var
(
ln Ŝ(t)

)
= ∑

{j|tj<t}
var

(
ln p̂j

)
(8)

Now, suppose that the number of people surviving at time tj, given by nj − dj, is distributed as Bin(nj, pj).
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Therefore

var
(

nj − dj

)
= nj pj(1− pj)

var p̂j =
var

(
nj − dj

)
n2

j

=
pj(1− pj)

nj
(9)

Now use the Taylor series approximation

var (g(X)) ≈
(

dg
dX

)2
var X

So equation (9) gives

var ln p̂j ≈
1
p̂2

j
var p̂j

=
1
p̂2

j

pj(1− pj)
nj

=
1− nj−dj

nj

nj
nj−dj

nj

=
dj

nj − dj

Using the Taylor series approximation again,

var ln Ŝ(t) ≈ 1
(Ŝ(t))2

var Ŝ(t)

Hence equation (8) gives

1
(Ŝ(t))2

var Ŝ(t) ≈ ∑
{j|tj<t}

dj

nj − dj

var Ŝ(t) ≈ (Ŝ(t))2 ∑
{j|tj<t}

dj

nj − dj

sterr
(
Ŝ(t)

)
≈

√√√√(Ŝ(t))2 ∑
{j|tj<t}

dj

nj − dj
�

(34.1.2) Distributions & Likelihood

It is of course necessary to decide upon some distributional form for a model if it is to be used in reality.
Any distribution must be defined only for t > 0, negative times are meaningless. One possibility is the
exponential distribution which gives

f (t) = λe−λt F(t) = 1− e−λt S(t) = E−λt h(t) = λ H(t) = λt
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As the hazard function is constant, this is known as the constant hazard model. The gamma distribution,
given by

f (t) =
βαtα−1e−βt

Γ(α)

is a suitable distribution, though it is particularly difficult to work with. A useful alternative is the Weibull
distribution, where the random variable T has Tγ ∼ E (λγ). From defining H(t) = (λt)γ the following can
be deduced

h(t) = λγ(λt)γ−1 S(t) = exp (−(λt)γ) f (t) = λγ(λt)γ−1 exp (−(λt)γ)

Having chosen a distribution a likelihood can be calculated. Before giving a specific example, some of the
calculations can be performed for a general distribution.

Let the probability density function be characterised by some parameter vector Œ. Populants that are cen-
sored cannot contribute a failure time to the likelihood, so instead the survivor function is used to give

L = ∏
uncensored

f (ti, Œ) ∏
censored

S(ti, Œ)

where for the censored populants ti is the first time at which censoring is noticed.

l = ∑
uncensored

ln f (ti, Œ) + ∑
censored

ln S(ti, Œ)

= ∑
uncensored

ln S(ti, Œ) + ∑
uncensored

ln h(ti, Œ) + ∑
censored

ln S(ti, Œ) using h(t) =
f (t)
S(t)

= ∑
uncensored

ln h(ti, Œ) + ∑
all

ln S(ti, Œ)

= ∑
uncensored

ln h(ti, Œ)−∑
all

H(ti, Œ)

Using the constant hazard model this gives

l = ∑
uncensored

ln λ−∑
all

λti = d ln λ−∑
all

λti (10)

where d populants fail. Differentiating,

λ̂ =
d

∑all ti

∂2l
∂λ2 =

−d
λ2

so the asymptotic variance of λ̂ is λ2

d . Using λ̂ the survivor function and hazard function can be estimated.

Analysis Under Full Parameterisation

The probability density function, and hence S and h, may be parameterised in some general parameters Œ
and some parameters fi relating to explanatory variables z. Hence write

l(t, Œ, fi) = ∑
uncensored

ln f (ti, zi, Œ) + ∑
censored

ln S(ti, zi, Œ)

= ∑
uncensored

ln h(ti, zi, Œ) + ∑
all

ln S(ti, zi, Œ)

At this point it is necessary to specify a distribution. As an example, say f is exponentially distributed, so
that the rate parameter λ is then determined by the explanatory variables z. Hence write λ = ρ(z, fi) so that

h = ρ H = ρt S = e−H
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and therefore
l(t, Œ, fi) = ∑

uncensored
ln ρ(zi, Œ)−∑

all
ρ(zi, Œ)ti

Now put ρ(zi, fi) = exp (fi>zi), so

l(t, Œ, fi) = ∑
uncensored

fi>zi −∑
all

efi>zi ti

Differentiating, the expected Fisher information matrix can be obtained.

(34.1.3) Related Survival Distributions

It is often the case that two populations are under consideration, where the hazard function of one may
be considered as a function of the hazard function of the other. For example in a medical trial a control
group may have hazard function h0 while a test group has a hazard function h1. Two main relationships are
considered.

Accelerated Life Model

Let population 0 have survivor function S0(t), and for population 1 put S1(t) = S0(ψt).

1− F1(t) = S1(t) = S0(ψt) so f1(t) = ψ f0(t)

and similarly h1(t) = ψh0(t). Generally ψ will be a function of some explanatory variables z. This model is
not of much interest. The other, more interesting, relationship is discussed in the next section.

(34.1.4) Proportional Hazards Model For Related Populations

The Proportional Hazards Model

For proportional hazards, put h1(t) = ψh0(t), as the name suggests. Here ψ must be independent of time,
but may be parameterised by explanatory variables to give ψ = ψ(z).

For example, one may put ψ = exp (fi>z), which is known as the Cox model.

Generally, let λ be the hazard rate for population 0, and so let λψ be the hazard rate for population 1. For
constant λ i.e., the constant risk model where T ∼ E (λ) equation (10) gives

l(ψ, λ) = d0 ln λ− λ ∑
P0

ti + d0 ln λψ− λψ ∑
P1

ti

Differentiating gives
∂l
∂λ

=
d0 + d1

λ
−∑

P0

ti − ψ ∑
P1

ti
∂l
∂ψ

=
d1
ψ
− λ ∑

P1

ti

from which some simple algebra gives

λ̂ =
d0

∑P0
ti

ψ̂ =
d1 ∑P0

ti

d0 ∑P1
ti

Finding the second partial derivatives allows the information matrix to be found, the inverse of which is the
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variance-covariance matrix,( −d1
ψ2 −∑P1

ti

−∑P1
ti

−(d0+d1)
λ2

)−1

=
1

(d0 + d1)d1 − λ2ψ2
(
∑P1

ti
)2

(
(d0 + d1)ψ2 −λ2ψ2 ∑P1

ti

−λ2ψ2 ∑P1
ti d1λ2

)

From this the standard errors can be read off, and substituting with the estimates for λ and ψ gives

sterr
(
ψ̂
)

=

√√√√ (d0 + d1)ψ2

(d0 + d1)d1 − λ2ψ2
(
∑P1

ti
)2 sterr

(
λ̂
)

=

√√√√ d1λ2

(d0 + d1)d1 − λ2ψ2
(
∑P1

ti
)2

= ψ̂

√
d0 + d1

d0d1
=

λ̂√
d0

Due to the skewed distributions of λ and ψ these standard errors cannot be used to find confidence intervals:
the assumption of normality does not hold. However, confidence intervals for ln λ and ln ψ can be found in
the usual way, using the Taylor series approximation to find the standard error of ln λ and ln ψ.

General Likelihood Function

The function ψ is typically dependent on some explanatory variables z and there are three popular param-
eterisations:

• The log-linear parameterisation where ψ(z, fi) = exp fi>z.

• The linear parameterisation where ψ(z, fi) = 1 + fi>z.

• The logistic parameterisation where ψ(z, fi) = ln
(

1 + exp fi>z
)

.

For whichever parameterisation is chosen it is necessary to find a likelihood function so that an estimates
for fi and h0 can be found.

Let the population be of size n and suppose that one populant fails at each of r failure times, t1 < t2 < · · · <
tr. Hence there are n− r censorings. Define the “risk set”

R(tj) = {populants that have not failed at time tj, or are censored just prior to tj.}

Note that the risk set includes populants that fail at time tj. For simplicity the case where there is no censoring
is considered. Let zj be the explanatory variables for a populant failing at time tj then

Pr
{

populant i fails at time tj | tj is an observed failure time
}

= Pr
{

populant with explanatory variables zj failes at time tj | one failure occurs at each tj

}
=

Pr
{

populant with explanatory variables zj failes at time tj

}
Pr
{

one failure occurs at each tj

}
=

hi(tj)

∑k∈R(tj) hk(tj)

=
ψ(i)

∑k∈R(tj) ψ(k)

and hence the likelihood function is

L =
r

∏
j=1

ψ(i)
∑k∈R(tj) ψ(k)
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For censored data it is assumed that censorings occur immediately after failure times. Censorings in the
time interval (tj−1, tj) effect the risk set R(tj). The same likelihood function is used, though it becomes only
a partial likelihood function.

Derivatives Of The General Likelihood Function

Write ψ(i) for ψ(fi, zi) and ψu(i) for the derivative of ψ(fi, zi) with respect to the uth element of fi. Let D be
the set of populants that fail and are not censored. Hence

l = ∑
i∈D

ln ψ(i)− ln ∑
k∈R(tj)

ψ(k)


Let li be the ith term of this sum then

∂li
∂βu

=
ψu(i)
ψ(i)

−
∑k∈R(tj) ψu(i)

∑k∈R(tj) ψ(k)

∂2li
∂βu∂βv

=
ψuv(i)
ψ(i)

− ψu(i)ψv(i)
(ψ(i))2 −

∑k∈R(tj) ψuv(i)

∑k∈R(tj) ψ(k)
+

∑k∈R(tj) ψu(i)ψv(i)(
∑k∈R(tj) ψ(k)

)2

A covariance matrix, and note putting ψ(z, fi) = exp fi>z gives a bit of a simplification.

Multiple failures at a single time

(34.2) Mathematical Foundation Of Statistics

(34.2.1) Probability Space

As with many branches of mathematics, sets play a fundamental rôle in the underlying workings of statis-
tics. In statistics it is usual to consider some set Ω of ‘outcomes’, and take a family of subsets A ⊆ 2Ω as
‘events’.

Sets

A sequence of sets {An}∞
n=1 is monotone increasing if An ⊆ An+1 for all n. In this case the definition

lim
n→∞

An =
∞⋃

n=1
An

makes sense. Similarly, for a monotone decreasing sequence where An ⊇ An+1 define

lim
n→∞

An =
∞⋂

n=1
An

For an arbitrary sequence define

lim
n→∞

An = lim
n→∞

inf
k>n

Ak = lim
n→∞

⋂
k>n

Ak and lim
n→∞

An = lim
n→∞

sup
k>n

Ak = lim
n→∞

⋃
k>n

Ak

If both of these limits exist and are the same, A say, then write lim An = A. It can be shown that in general
lim An ⊆ lim An, and equality need not hold.



34.2. MATHEMATICAL FOUNDATION OF STATISTICS 9

Fields

Definition 11 A non-empty family of sets A that is closed under finite unions and under complementation is called a
field.

Equivalently, the requirement of closure under finite unions may be replaced with closure under finite
intersections, as the following lemma shows.

Lemma 12 A non-empty family of sets A that is closed under complementation is closed under finite unions if and
only if it is closed under finite intersections.

Proof. Let A be a field. Let A1, A2, . . . , An ∈ A then A{
i ∈ A for all i.

(⇒) Since A is closed under finite unions,
⋃n

i=1 A{ ∈ A and therefore
(⋃n

i=1 A{
){

∈ A. But then by
De-Morgan’s laws,

⋂n
i=1 ai ∈ A.

(⇐) Since A is closed under finite intersections,
⋂n

i=1 A{ ∈ A and therefore
(⋂n

i=1 A{
){
∈ A. But then by

De-Morgan’s laws,
⋃n

i=1 ai ∈ A. �

The family A must have some underlying set of which its elements are subsets, Ω say. Therefore A ⊆ 2Ω.
Every field contains both ∅ and Ω, indeed {∅, Ω} is a field.

Fields are not sufficiently ‘well behaved’, and so a weakening of the definition is permitted.

Definition 13 A non-empty family of sets A that is closed under complementation and countable unions is called a
σ-field.

Once again, replacing “union” with “intersection” gives a completely equivalent definition. Clearly a σ-field
is a field.

A particularly useful σ-field is the Borel field, B, which is the field generated from

C = {(x, ∞) | x ∈ R}

Probability Space

Definition 14 Probability space is an ordered triplet (Ω,F , Pr) where Ω is a non-empty set, F is a σ-field of subsets
of Ω, and Pr : F → [0, 1] is the probability measure.

A probability space has the following important properties. They are not difficult to prove, but the proof is
omitted here. Let (Ω,F , Pr) be a probability space and let A, B, A1, A2, . . . , An, · · · ∈ F .

1. Pr {A} > 0

2. Pr {Ω} = 1

3. If A =
⋃n

i=1 Ai is a disjoint union then Pr {A} = ∑n
i=1 Pr {Ai}.

4. If A =
⋃∞

i=1 Ai is a disjoint union then Pr {A} = ∑∞
i=1 Pr {Ai}.

5. Pr {∅} = 0.

6. If A ⊆ B then Pr {A} 6 Pr {B}.

7. If A =
⋃n

i=1 Ai then Pr {A} 6 ∑n
i=1 Pr {Ai}.
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The probability measure is a continuous function in the sense that if An → A as n → ∞ then Pr {An} →
Pr {A}.

Theorem 15 Let (Ω,F , Pr) be a probability space and let {Ai}∞
i=1 be a sequence in F with limit A. If An → A as

n → ∞ then Pr {An} → Pr {A}.

Proof. First of all suppose that {An} is increasing, and write Bn = An+1 \ An so that {Bn} is a collection of
disjoint elements of F . Now, An =

⋃n
i=1 Bi and furthermore

⋃∞
i=1 Bi = A. Hence Pr {An} = ∑∞

i=1 Pr {Bi}
and

lim
n→∞

Pr {An} = lim
n→∞

n

∑
i=1

Pr {Bi} =
∞

∑
i=1

Pr {Bi} = Pr {A} (16)

Similarly if {An} is decreasing.

Consider now some arbitrary sequence {An} then

⋂
k>n

Ak ⊆ An ⊆
⋃

k>n
Ak

⇒ Pr

{⋂
k>n

Ak

}
6Pr {An} 6 Pr

{⋃
k>n

Ak

}
(17)

But since An → A as n → ∞,

lim
n→∞

⋂
k>n

Ak = lim
n→∞

An = A and lim
n→∞

⋃
k>n

Ak = lim
n→∞

Ak = A

Using equation (16) on the right hand inequality in equation (17) and the corresponding equation for de-
creasing sequences on the left hand inequality, the squeeze rule shows that Pr {An} → Pr {A} as n → ∞. �

(34.2.2) Random Variables

Random Variables

Definition 18 Let (Ω,F , Pr) be a probability space. A function X : Ω → R is a random variable if for any E ∈ B,
X−1(E) ∈ F .

This apparently peculiar property allows X to induce a probability measure PX onB by PX(E) = Pr
{

X−1(E)
}

.
This gives a new probability space (R,B, PX).

Definition 19 Let (Ω,F , Pr) be a probability space, X : Ω → R be a random variable, and PX be the measure induced
by X. The function

FX : R → [0, 1] defined by FX : x 7→ PX{(−∞, x)} = Pr {ω ∈ Ω | X(ω) 6 x}

is called the distribution of X.

The distribution function is a right-continuous, non-decreasing function. It has limit 0 at −∞ and limit 1 at
∞. Moreover, any function with these four properties is a distribution function of some random variable.

The derivative (Ralon-Nikodym derivative) of PX is called the probability density function.

Note that if g : R → R and X is a random variable then g(X) is also a random variable.



34.2. MATHEMATICAL FOUNDATION OF STATISTICS 11

Definition 20 Let (Ω,F , Pr) be a probability space, X : Ω → R be a random variable, and g : R → R. If g(X) is
integrable over Ω then the expectation of g(X) is

E g(X) =
∫

Ω
g(X(ω)) dPr {ω}

=
∫

R
g(x) dPX

=
∫

R
g(x) dF(x)

Theorem 21 (Hölder Inequality) Let p, q ∈ R+ with 1 < p < q and 1
p + 1

q = 1. If X and Y are random variables
such that E |X|p and E |Y|q exist then

E |XY| 6 (E |X|p) 1
p

(E |Y|q) 1
q

Theorem 22 (Minkowski Inequality) Let p ∈ R with p > 1 and let X and Y be random variables such that E Xp and
E Yp exist. Then

(E (X + Y)p)
1
p 6 (E Xp)

1
p + (E Yp)

1
p

Convergence

Definition 23 (Almost Sure Convergence) Let {Xn}∞
n=1 be a sequence of random variables on a probability space

(Ω,F , Pr). {Xn} converges to the random variable X almost surely if and only if

∀A ∈ F with Pr {A} = 0 ∀ω ∈ A{ |Xn(ω)− X(ω)| → 0 as n → ∞

In this case write Xn
as→ X as n → ∞.

Roughly speaking, this means that the convergence need only hold for those ωinΩ that can occur: If ω ∈ Ω
belongs to no element A ∈ F with Pr {A} > 0 then the convergence need not hold for this ω since it almost
surely will never occur.

Almost sure convergence is not easy to check, indeed it is a very strong form of convergence as is demon-
strated later in Theorem 27. Fortunately there is a criterion for almost sure convergence.

Theorem 24 Let {Xn}∞
n=1 be a sequence of random variables on a probability space (Ω,F , Pr). If

∞

∑
n=1

Pr {|Xn − X| > ε}

exists (i.e., is finite) for all ε > 0 then Xn
as→ X as n → ∞.

Proof. Now,

Pr

{
∞⋃

k=n
{ω ∈ Ω | |Xk(ω)− X(ω)| > ε}

}
6

∞

∑
k=n

Pr {|Xk − X| > ε}

The term on the right here is the ‘tail end’ of a sum which, by hypothesis, converges. Hence

lim
n→∞

∞

∑
k=n

Pr {|Xk − X| > ε} = 0

and so by the squeeze rule the result is shown. �

Definition 25 (Convergence In Probability) Let {Xn}∞
n=1 be a sequence of random variables on a probability space
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(Ω,F , Pr). {Xn} converges to the random variable X in probability if

∀ε > 0 Pr {ω | |Xn(ω)− X(ω)| > ε} → 0 as n → ∞

In this case write Xn
p→ X as n → ∞.

Theorem 26 If Xn
p→ X then |Xn − Xm|

p→ 0 as n, m → ∞.

Proof. Define the sets

A = {ω | |Xn(ω)− Xm(ω)| > ε}

B = {ω | |Xn(ω)− X(ω)| > ε

2
} ∪ {ω | |Xm(ω)− X(ω)| > ε

2
}

By the triangle inequality

|Xn(ω)− X(ω)|+ |Xm(ω)− X(ω)| 6 |Xn(ω)− Xm(ω)| 6 ε

and so one of |Xn(ω)− X(ω)| and |Xm(ω)− X(ω)| must be at least ε
2 . Hence A ⊆ B. Hence

Pr {|Xn − Xm > ε} 6 Pr
{
{|Xn − X| > ε

2
} ∪ {|Xm − X| > ε

2
}
}

6 Pr
{
|Xn − X| > ε

2

}
+ Pr

{
|Xm − X| > ε

2

}
→ 0 as n, m → ∞

Hence by the squeeze rule the result is shown. �

Theorem 27 If Xn
as→ X as n → ∞ then Xn

p→ X as n → ∞.

Proof. Well, Xn
as→ X if and only if

∀ε > 0 lim
n→∞

Pr

{
∞⋃

k=n
{|Xk − X| > ε}

}
= 0

Now,

{|Xn − X > ε} ⊆
∞⋃

k=n
{|Xk − X| > ε}

so Pr {|Xn − X > ε} 6 Pr

{
∞⋃

k=n
{|Xk − X| > ε}

}

The right hand side of this tends to 0 as n → ∞ and hence by the squeeze rule the result is shown. �

Definition 28 Let X be a random variable. If E |X|p exists (i.e., is finite) then write X ∈ Lp.

Definition 29 (Convergence In p-th Order Mean) Let {Xn}∞
n=1 be a sequence of random variables on a probability

space (Ω,F , Pr) such that Xn ∈ Lp. {Xn} converges to the random variable X in p-th order mean if

E |Xn − X|p → 0 as n → ∞

In this case write Xn
Lp→ X as n → ∞.

Theorem 30 Let {Xn}∞
n=1 be a sequence of random variables with Xn ∈ Lp. If Xn

Lp→ X as n → ∞ then E |X|p →
E |X|p as n → ∞ for any p > 0.

Proof. If p > 1 then Theorem 22 applies, so that for random variables U, V ∈ Lp

(E |U + V|p)
1
p 6 (E |U|p)

1
p + (E |V|p)

1
p
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Put U = Xn − X and V = X to give

(E |Xn|p)
1
p 6 (E |Xn − X|p)

1
p + (E |X|p)

1
p

Now putting U = Xn − X and V = Xn gives

(E |X|p)
1
p 6 (E |Xn − X|p)

1
p + (E |Xn|p)

1
p

and hence
(E |X|p)

1
p − (E |Xn − X|p)

1
p 6 (E |Xn|p)

1
p 6 (E |Xn − X|p)

1
p + (E |X|p)

1
p �

which gives the required result.

If 0 < p < 1, please complete this proof

Theorem 31 Let {Xn}∞
n=1 be a sequence of random variables with Xn ∈ Lp. If Xn

Lp→ X as n → ∞ then Xn
p→ X as

n → ∞.

Proof. By problem sheet 1, question 5. . .

For any ε > 0

Pr {|Xn − X| > ε} 6
E |Xn − X|p

εp

But since Xn
Lp→ X as n → ∞ the squeeze rule shows that Xn

p→ X as n → ∞. �

If also the random variables Xn are bounded almost surely, then the converse of this theorem holds.

Definition 32 (Convergence In Distribution (Law)) Let {Fn(x)}∞
n=1 be a sequence of distribution functions. If Fn(x) →

F(x) as n → ∞ for all continuity points x of F then the sequence {Fn} converges weakly (or in law) to F.

If Xn has distribution function Fn that converges in law to F then write Xn
L→ X. In fact F need not be a

distribution function, so this only makes sense when X has distribution function F.

A subtle difference between convergence in law and the other varieties of convergence is that the Xn need
not be defined on the same probability space: the conditions for convergence are couched entirely in terms
of the distribution function, which ‘hides’ this information.

Theorem 33 If Xn
p→ X as n → ∞ then Xn

L→ X as n → ∞.

Proof. Let x, x′ ∈ R then

F(x′) = Pr
{

X 6 x′
}

= Pr
{

Xn 6 x and X 6 x′
}

+ Pr
{

Xn > x and X 6 x′
}

6 Pr {Xn 6 x}+ Pr
{

Xn > x and X 6 x′
}

= Fn(x) + Pr
{

Xn > x and X 6 x′
}

6 Fn(x) + Pr
{
|Xn − X| > x′ − x

}
when x′ < x (34)

Considering now some x′′ > x, by symmetry with the above case

Fn(x) 6 F(x′′) + Pr
{
|Xn − X| > x′′ − x

}
(35)
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Using equation (34) and equation (35) gives

F(x′)− Pr
{
|Xn − X| > x− x′

}
6 Fn(x) 6 F(x′′)− Pr

{
|Xn − X| > x′′ − x

}
Now let x′ → x− and x′′ → x+ to give

lim
n→∞

Fn(x) = F(x)

i.e., Xn
L→ X as n → ∞. �

Theorem 36 Let c be a constant. Then Xn
p→ c as n → ∞ if and only if Xn

L→ c as n → ∞.

Proof. First of all it is necessary to find the distribution function of the random variable X that has X(ω) = c
for all ω ∈ Ω. Recall for a probability space (Ω,F , Pr) that X is a function, in this case

X : Ω → R defined by X : ω 7→ c

Now let E ⊆ R so that E ∈ C. Then

X−1(E) =

∅ if c /∈ E

Ω if c ∈ E
so F(x) = PX((−∞, x]) =

0 if x < c

1 if x > c

(⇒) Apply Theorem 33 with F(x) as calculated above.

(⇐) Suppose that Fn is convergent to F (as calculated above) in law, then

Pr {|Xn − c| > ε} = Pr {Xn > c + ε}+ Pr {Xn 6 c− ε}

= 1− Pr {Xn < c + ε}+ Pr {Xn 6 c− ε}

= 1− Fn(c + ε) + Fn(c− ε) (37)

Now, as n → ∞, Fn → F. Furthermore,

lim
ε→0

F(c + ε) = 1 and lim
ε→0

F(c− ε) = 0

so that equation (37) gives the required result. �

(34.2.3) Laws Of Large Numbers

Consider a sequence of random variables {Xi}n
i=1 that are independently and identically distributed. A

“law of large numbers” is a condition under which the average Sn
n = 1

n ∑n
i=1 Xi is convergent to a constant.

Theorem 38 (Chebyshev’s Weak Law Of Large Numbers) Let {Xi}n
i=1 be a sequence of independently and identi-

cally distributed random variables such that E X2
n exists. If ∃γ > 0 such that var Xi 6 γ for all i then

Sn −E Sn

n
p→ 0 as n → ∞

Theorem 39 (Khintchine’s Weak Law Of Large Numbers) Let {Xi}n
i=1 be a sequence of independently and identi-

cally distributed random variables each with E Xi = µ for some constant µ. Then

Sn

n
p→ µ as n → ∞
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Theorem 40 (Strong Law Of Large Numbers) Let {Xi}n
i=1 be a sequence of independently and identically distributed

random variables each with E Xi = 0 and var Xi = σ2
i (finite). If

∞

∑
i=1

σ2
i

n

exists (i.e., is finite) then
1
n

n

∑
i=1

Xi =
Sn

n
as→ 0 as n → ∞

Note that equivalently, if E Xi = µi then with the same condition on the variances this result becomes

1
n

n

∑
i=1

(Xi − µi)
as→ 0 as n → ∞

(34.3) Mathematics Of Discrete Probability Distributions

(34.3.1) Discrete Probability Distributions

A discrete probability distribution refers to a random variable X taking values on a set {0, 1, . . . } with
probabilities Pr {X = x} = px. It is required that px > 0 and that

∞

∑
x=0

px = 1

Hence discrete probability distributions are sequences of real numbers which sum to 1. Throughout this
section, three important examples will be considered: the Poisson distribution, the binomial distribution,
and the negative binomial distribution.

The Poisson distribution is constructed from the exponential series

eλ = 1 + λ +
λ2

2!
+

λ3

3!
+ . . .

1 = e−λ + e−λλ +
e−λλ2

2!
+

e−λλ3

3!
+ . . .

so that px = e−λλx

x! for x ∈ N∪ {0} and λ ∈ R+.

Similarly, the binomial distribution arrises from the binomial series, where for 0 < p < 1(
1 +

p
1− p

)n
= 1 + n

(
p

1− p

)
+
(

n
2

)(
p

1− p

)2
+ · · ·+

(
n
x

)(
p

1− p

)x
+ · · ·+

(
p

1− p

)n

so that for x ∈ {0, 1, . . . , n}

px =
(

n
x

)(
p

1− p

)x (
1 +

p
1− p

)−n

=
(

n
x

)(
p

1− p

)x
(1− p)n

=
(

n
x

)
px(1− p)n−x
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Of course the negative binomial distribution arrises from the negative binomial series, where for 0 < p < 1

(1− (1− p))−n = 1 + n(1− p) +
n(n− 1)

2!
(1− p)2 + · · ·+

(
n + x− 1

x

)
(1− p)x + . . .

so that for x ∈ N∪ {0}

px =
(

n + x− 1
x

)
(1− p)x pn

(34.3.2) Probability Generating Functions

A probability generating function Π for a discrete probability distribution px with x ∈ N∪ {0} is the power
series

Π(z) =
∞

∑
x=0

pxzx

Notice that for |z| < 1 the series is always convergent, though is particular cases it may converge for a larger
range of z. Also, Π(1) = 1.

In fact, given any function Π(z) such that Π(1) = 1 and all derivatives evaluated at 0 (exist and) are positive,
and a value for Π(0), a probability generating function can be constructed as

Π(z) = Π(0) +
dΠ
dz

∣∣∣∣
z=0

z +
d2Π
dz2

∣∣∣∣
z=0

z2

2!
+ · · ·+ dxΠ

dzx

∣∣∣∣
z=0

zx

x!
+ . . .

Hence there is a 1-to-1 correspondence between probability generating functions and discrete probability
distributions.

For the Poisson distribution

Π(z) =
∞

∑
x=0

zx px

=
∞

∑
x=0

zx e−λλx

x!

= e−λ
∞

∑
x=0

(λz)x

x!

= e−λeλz = e−λ(1−z)

Similarly, for the binomial and negative binomial distributions,

Π(z) =
n

∑
x=0

zx
(

n
x

)
px(1− p)n−x Π(z) =

∞

∑
x=0

zn
(

n + x− 1
x

)
(1− p)x pn

= (1− p)n
n

∑
x=0

(
n
x

)(
pz

1− p

)n
= pn

∞

∑
x=0

(
n + x− 1

x

)
(z(1− p))x

=
1

(1− p)n

(
1 +

pz
1− p

)n
=
(

p
1− z(1− p)

)n

= (1− p + zp)n
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(34.3.3) Obtaining Moments From Probability Generating Functions

The Mean

The mean of a probability distribution is readily obtained from the probability generating function as fol-
lows.

µ =
∞

∑
x=0

xpx

=
∞

∑
x=0

d
dz

zx
∣∣∣∣
z=1

px

=
d
dz

(
∞

∑
x=0

pxzx

)∣∣∣∣∣
z=1

=
dΠ
dz

∣∣∣∣
z=1

The Variance

The variance is obtained from the probability generating function through a rather more convoluted process.
First of all, observe the following

σ2 = E (X − µ)2

= E X2 − 2µ E X + µ2

= E X2 − µ2

= E X(X − 1) + E X − µ2

= E X(X − 0) + µ− µ2

Now a similar trick as with the mean can be used

σ2 =
∞

∑
x=0

x(x− 1)px + µ− µ2

=
∞

∑
x=0

d2

dz2 zx
∣∣∣∣
z=1

+ µ− µ2

=
d2

dz2

(
∞

∑
x=0

zx px

)∣∣∣∣∣
z=1

+ µ− µ2

=
d2Π
dz2

∣∣∣∣
z=1

+ µ− µ2

Of course this process may be extended to give

E (X(X − 1)(X − 2) . . . (X − n)) =
dn+1Π
dzn+1

∣∣∣∣∣
z=1
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Examples

Of course, this is readily applicable to the Poisson distribution, binomial distribution, and negative binomial
distribution. For the Poisson distribution Π(z) = exp (− λ(1− z)) and so

µ =
dΠ
dz

∣∣∣∣
z=1

σ2 =
d2Π
dz2

∣∣∣∣
z=1

+ µ− µ2

=
d
dz

e−λ(1−z)
∣∣∣∣
z=1

=
d2

dz2 e−λ(1−z)
∣∣∣∣
z=1

+ µ− µ2

= λe−λ(1−1) = λ2e−λ(1−1) + µ− µ2

= λ = λ

Variance-Mean Relationships

Frequently there is a relationship between the variance and the mean of a probability distribution, and it
can be of interest to note this.

• For the Poisson distribution σ2 = µ.

• For the binomial distribution σ2 = µ
(
1− µ

n
)
.

• For the negative binomial distribution σ2 = µ
( µ

n + 1
)
.

Notice that the binomial distribution has its variance less than its mean: it is under-dispersed. Similarly,
the negative binomial distribution is over dispersed. Notice also that as n → ∞ both of these approach the
Poisson distribution.

(34.3.4) Mixed Distributions

The three distributions covered in detail so far doe not offer much flexibility. A general way to construct
over dispersed or under dispersed distributions is needed.

To construct an over dispersed distribution, take one of the three well known distributions and let the
parameter of the distribution vary between observations. Trivially this leads to over dispersion.

Mixed Poisson Distribution

Consider the Poisson distribution with parameter λ which itself has a Poisson distribution. Let λ be an
observation of the Poisson random variable Λ, then

Pr {X = x | Λ = λ} =
e−λλx

x!

The conditioning is removed in the usual way

(λdiscrete) Pr {X = x} =
∞

∑
λ=0

e−λλx

x!
Pr {Λ = λ}

(λcontinuous) Pr {X = x} =
∫ ∞

0

e−λλx

x!
f (λ) dλ
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The discrete case usually has to be done numerically. However, the continuous case can be pursued by
considering the probability generating function.

Π(z) =
∞

∑
x=0

zxPr {X = x}

=
∞

∑
x=0

zx
∫ ∞

0

e−λλx

x!
f (λ) dλ

=
∫ ∞

0
e−λ f (λ)

∞

∑
x=0

(λz)x

x!
dλ

=
∫ ∞

0
e−λ f (λ)e−λz

=
∫ ∞

0
e−λ(1−z) f (λ) dλ

= f ∗(1− z)

where f ∗ denoted the Laplace transform of f .

Definition 41 The Laplace transform of a function f is L ( f ) =
∫ ∞

0
e−st f (t) dt which is a function of s.

Note also that for f (t) = ekt where k ∈ R,

∫ ∞

0
e−stekt dt =

∫ ∞

0
e(k−s)t dt =

[
e(k−s)t

k− s

]∞

0

=
1

s− k

provided that s > k.

Negative Binomial Distribution As A Mixed Poisson Distribution

The mixed Poisson distribution and the negative binomial distribution are both over dispersed. In fact the
negative binomial distribution may be expressed in terms of a mixed Poisson distribution. In the probability
generating function of then negative binomial put s = 1− z to give

Π(z) =
(

p
1− z(1− p)

)n

=
(

p
1− (1− s)(1− p)

)n

=

( p
1−p

p
1−p + s

)n

But this is now in the form of the Laplace transform of an exponential function, so putting β = p
1−p gives

=
∫ ∞

0

e−sxβnxn−1e−βx

(n− 1)!
dx

=
∫ ∞

0

e−yβnyn−1

(s + β)n(n− 1)!
dy where y = (s + β)x

=
βn

(s + β)n since
∫ ∞

0
e−ttn dt = n!
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Hence the random variable Λ from which the Poisson parameter is observed has

Pr {Λ = λ} =
βnλn−1e−βλ

(n− 1)!

which is a gamma distribution.

Mixed Binomial Distribution

Allow the binomial parameter p to vary in the interval (0, 1) according to some distribution with probability
density function f (p). Then for the binomial random variable X,

Pr {X = x} =
∫ 1

0

(
n
x

)
px(1− p)n−x f (p) dp

One particular choice is the beta distribution, which gives

f (p) =
pα−1(1− p)β−1

B(α, β)

where α, β ∈ R+ and B is the beta function,

B(α, β) =
∫ 1

0
pα−1(1− p)β−1 dp =

Γ(α)Γ(β)
Γ(α + β)

note that
Γ(x) =

∫ ∞

0
tx−1e−t dt

and that if x ∈ N then Γ(x) = (x− 1)!. Hence the probability function may be calculated as follows.

px =
∫ 1

0

(
n
x

)
px(1− p)n−x pα−1(1− p)β−1

B(α, β)
dp

=
(n

x)
B(α, β)

∫ 1

0
px+α−1(1− p)n−x+β−1 dp

=
(

n
x

)
B(x + α, n− x + β)

B(α, β)

=
(

n
x

)
Γ(x + α)Γ(n− x + β)

Γ(n + α + β)
Γ(α + β)
Γ(α)Γ(β)

(42)

Now, Γ(x + 1) = xΓ(x) and hence

Γ(x + α) = (x + α− 1)(x + α− 2) . . . αΓ(α)

so
Γ(x + α)

Γ(α)
=

x−1

∏
i=0

(α + i)

where it is taken by definition that ∏−1
i=0 ai = 1 where ai is anything. (Consistently, a sum over an invalid

range is taken to be zero.) Hence returning to equation (42),

px =
(

n
x

)
Γ(x + α)Γ(n− x + β)

Γ(n + α + β)
Γ(α + β)
Γ(α)Γ(β)

=
(

n
x

)(x−1

∏
i=0

α + i

)(
n−x−1

∏
i=0

β + i

)(
n−1

∏
i=0

β + α + i

)−1
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Now divide by (α + β)n to give

px =
(

n
x

)(x−1

∏
i=0

α + i
α + β

)(
n−x−1

∏
i=0

β + i
α + β

)(
n−1

∏
i=0

β + α + i
α + β

)−1

=
(

n
x

)(x−1

∏
i=0

α

α + β
+ iθ

)(
n−x−1

∏
i=0

1− β

α + β
+ iθ

)(
n−1

∏
i=0

1 + iθ

)−1

where θ =
1

α + β

If θ = 0 then this expression reduces to the binomial distribution with p = α
α+β .

Something about a natural re-parameterisation where α 7→ α
α+β and β 7→ 1

α+β .

To find the mean and variance of this “beta-binomial” distribution, the probability generating function is
calculated so that Section 34.3.3 and Section 34.3.3 can be applied.

π(z) =
n

∑
x=0

zx px

=
n

∑
x=0

zx
∫ 1

0

(
n
x

)
px(1− p)n−x pα−1(1− p)β−1

B(α, β)
dp

=
∫ 1

0

((
n
x

)
(pz)x(1− p)n−x

)
pα−1(1− p)β−1

B(α, β)
dp

=
∫ 1

0
(1− p + pz)n pα−1(1− p)β−1

B(α, β)
dp

= E (1− P + zP)

where the expectation is taken over the beta distributed random variable P. To find the mean,

µ =
dπ

dz

∣∣∣∣
z=1∫ 1

0
np(1− p + pz)n−1 pα−1(1− p)β−1

B(α, β)
dp

∣∣∣∣∣
z=1

= n
∫ 1

0

pα(1− p)β−1

B(α, β)
dp

=
nB(α + 1, β)

B(α, β)

=
nΓ(α + 1)Γ(β)
Γ(α + β + 1)

Γ(α + β)
Γ(α)Γ(β)

=
nα

α + β

which is consistent with the interpretation of px being a binomial probability with p = α
α+β . Now for the
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variance,

d2π

dz2

∣∣∣∣
z=1

=
∫ 1

0
n(n− 1)p2(1− p + pz)n−2 pα−1(1− p)β−1

B(α, β)
dp

∣∣∣∣∣
z=1

= n(n− 1)
∫ 1

0

pα+1(1− p)β−1

B(α, β)
dp

=
B(α + 2, β)

B(α, β)

=
n(n− 1)Γ(α + 2)Γ(β)

Γ(α + β + 2)
Γ(α + β)
Γ(α)Γ(β)

=
n(n− 1)α(α + 1)

(α + β)(α + β + 1)

Hence using Section 34.3.3,

σ2 =
n(n− 1)α(α + 1)

(α + β)(α + β + 1)
+

nα

α + β
−
(

nα

α + β

)
=

...

= µ
(

1− µ

n

)(
1 +

(n− 1)θ
1 + θ

)

(34.3.5) Alternative Constructions Of Discrete Distributions

General Model

A Markov process is a random variable X(t) for “time” t for which X(0) = 0 and takes integer values such
that

Pr {X(t + δt) = i + 1 | X(t) = i} = λiδt

Pr {X(t + δt) = i | X(t) = i} = 1− λiδt

The unconditional probabilities pi(t) = Pr {X(t) = i} are of interest, and it will be shown that particular
choices for the sequence {λi}∞

i=0 yield probabilities pi(t) according to familiar distributions.

Pr {X(t + δt) = j} =
∞

∑
i=0

Pr {X(t + δt) = j | X(t) = i}Pr {X(t) = i}

= ∑
i∈{j,j+1}

Pr {X(t + δt) = j | X(t) = i}Pr {X(t) = i}

pj(t + δt) = (1− λjδt)pj(t) + (λj−1δt)pj−1(t)

pj(t + δt)− pj(t)
δt

= −λj pj(t) + λj−1 pj−1(t)

dpj(t)
dt

= −λj pj(t) + λj−1 pj−1(t)

though of course this can only hold for j > 1, which begs the question as to what happens for j = 0. In this
case p0(t + δt) = (1− λ0δt and so

dp0(t)
dt

= −λ0 p0(t)
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Hence the following system of differential difference equations has been determined.

dpj(t)
dt

= −λj pj(t) + λj−1 pj−1(t)
dp0(t)

dt
= −λ0 p0(t) p0(0) = 1 pj(0) = 1 ∀j > 1 (43)

Clearly p0(t) = e−λ0t. For j > 1,

dpj(t)
dt

= −λj pj(t) + λj−1 pj−1(t)

dpj(t)
dt

+ λj pj(t) = λj−1 pj−1(t)

d
dt

(
eλjt pj(t)

)
= e−λjtλj−1 pj−1(t)

pj(t) = eλjt
∫ t

0
e−λjsλj−1 pj−1(t) ds

=
∫ t

0
e−λj(s−t)λj−1 pj−1(t) ds

and so for any given sequence {λj}∞
j=0 this generates a discrete probability distribution p0(t), p1(t), . . . for

chosen t. It is usual to take t = 1 for simplicity.

In fact for any discrete probability distribution with probabilities π0, π1, . . . a sequence {λj}∞
j=0 can be found

which yields the given probabilities.

A few particular choices for {λj}∞
j=0 are now examined more carefully.

Constant λj

Put λj = λ for all j then equation (43) becomes

dpj(t)
dt

= −λpj(t) + λpj−1(t)
dp0(t)

dt
= −λp0(t) p0(0) = 1 pj(0) = 1 ∀j > 1

Rather than try to solve these equations directly, the probability generating function provides an easier
alternative.

π(z, t) =
∞

∑
j=0

pj(t)zj

∂π

∂t
=

∞

∑
j=0

dpj(t)
dt

zj

= −
∞

∑
j=0

λpj(t)zj +
∞

∑
j=1

λpj−1(t)zj

= −λπ(z, t) + λzπ(z, t)

= −λ(1− z)π(z, t)

π(z, t) = e−λ(1−z)t f (z)

for some arbitrary function f . But using the initial conditions π(z, 0) = 1 from which clearly f (z) = 1 and
hence

π(z, t) = e−λ(1−z)t
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But this is the probability generating function of the Poisson distribution, so

pj(t) =
e−λt(λt)j

j!

Linear Increasing λj

Put λj = a + bj for a, b ∈ R+ then equation (43) becomes

dpj(t)
dt

= −(a + bj)pj(t) + (a + b(j− 1))pj−1(t)
dp0(t)

dt
= −ap0(t) p0(0) = 1 pj(0) = 1 ∀j > 1

Heading again for the probability generating function,

∂π

∂t
=

∞

∑
j=0

dpj(t)
dt

zj

= −
∞

∑
j=0

(a + bj)pjzj +
∞

∑
j=1

(a + b(j− 1))pj−1zj

= −a
∞

∑
j=0

pjzj − bz
∞

∑
j=0

jpjzj−1 + az
∞

∑
j=1

pj−1zj−1bz2
∞

∑
j=1

(j− 1)pj−1zj−2

= −a(1− z)π(z, t)−
∂π

∂t
+ bz(1− z)

∂π

∂z
= a(1− z)π

Now, incredibly informally, in general

∂π

∂t
dt +

∂π

∂z
dz = dπ

and hence put dt = 1, dz = bz(1− z), and ∂π = −a(1− z)π) to give

dt
1

=
dz

bz(1− z)
=

dπ

−a(1− z)π

with another feat of alarming informality, this gives

dz
dt

= bz(1− z)
dπ

dt
=
−a(1− z)π

bz(1− z)∫ 1
bz(1− z)

dz =
∫

1 dt =
−aπ

bz
1
b

∫ 1
z

+
1

1− z
dz =

∫
1 dt b

∫ 1
π

dπ = −a
∫ 1

z
dz

1
b

(ln z + ln (1− z)) = t + C b ln π + a ln z = D

1
b

ln
(

z
1− z

)
= t + C ln (πbza) = D

C =
ze−bt

1− z
D = πbza

Hence if z and t vary such that ze−bt

1−z is constant then πbza is constant. Hence

πbza = φ

(
ze−bt

1− z

)
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for some arbitrary function φ. To find φ observe that π(z, 0) = 1 and therefore

za = φ

(
z

1− z

)
and by putting x = z

1−z it is evident that

φ(x) =
(

x
1 + x

)a

and hence

π(z, t) =

(
e−bt

1− z(1− e−bt)

) a
b

This is the same probability generating function as for the negative binomial with p = e−bt and n = a
b .

Therefore

pj(t) =
( a

b + (j− 1)
) ( a

b + (j− 2)
)

. . .
( a

b
)

j!

(
1− e−bt

)j (
ebt
) a

b

Linear Decreasing λj

Put λj = a(n− j) for 0 6 j 6 n and λj = 0 for j > n then equation (43) becomes

dpj(t)
dt

= −a(n− j)pj(t) + a(n− (j− 1))pj−1(t)
dp0(t)

dt
= −ap0(t) p0(0) = 1 pj(0) = 1 ∀1 6 j 6 n

now calculating the probability generating function,

∂π

∂t
=

n

∑
j=0

dpj(t)
dt

zj

= −
n

∑
j=0

a(n− j)pj(t)zj +
n

∑
j=1

a(n− (j− 1))pj−1(t)zj

= −
n

∑
j=0

a(n− j)pj(t)zj +
n+1

∑
j=1

a(n− (j− 1))pj−1(t)zj

= −an
n

∑
j=0

pj(t)zj + az
n

∑
j=0

jpj(t)zj−1 + anz
n+1

∑
j=1

pj−1(t)zj−1 − az
n+1

∑
j=1

pj−1(t)zj−2(j− 1)

= −anπ + azπ + az
∂π

∂z
+ anπ − az2 ∂π

∂z
∂π

∂t
− az(1− z)

∂π

∂z
= −an(1− z)π

This partial differential equation has similar form to that obtained when λj was a linear decreasing sequence.
This equation may be obtained by replacing b with −a and −a with −an. Hence

π =
(

eat

1− z(1− eat)

) an
−a

=
(
e−at + z(1− e−at)n

which is the probability generating function for the binomial distribution, and hence

pj(t) =
(

n
j

)
(1− e−at)j(e−at)n−j
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for 0 6 j 6 n.


