Chapter 28
MSMYS2 Time Series And Forecasting

(28.1) Analysis Over Time

(28.1.1) Time Series & Trends

Much of statistical theory is concerned with independent and identically distributed random variables.
What happens when this is not the case is, essentially, the subject of this chapter. Take for example the
price of a stock: one expects the price tomorrow to be similar to that today, and that perhaps from the past

predictions about the future can be made.

Perhaps the most prominent feature of time series data is an ‘overall trend’, closely followed by cyclicity.
These become apparent when data is plotted, and plotting data is advisable as it can be very revealing. Some
trends are ‘fake’, that is they arise randomly, perhaps to the variance of the data increasing over time—this
would suggest divergence from a central level. Other trends are not, and these can be modeled with a
function of the form Y(t) = u(t) + X(t) where u represents the trend and X is a stochastic process.

The lack of independence of the data means that it is somehow dependent on itself. Whereas two random
variables may be correlated in the ordinary sense it should not now come as much of a surprise that for a

time series the data is correlated with itself.

Definition | For a time series Y (t) define the autocovariance function
v(s,8) = E(Y(s) = EY(s)) (Y(t) —EY(£))
and the autocorrelation function

_ v(s, t)
P = G oD

Definition 2 Let Y(y) be a time series. Y(t) is stationary if
Y(t1 +5) =Yty +5)=---=Y(tm +5)
for all m. The process is said to be second order stationary if
v(s,t) = F(|t —s|) orequivalently (¢, t + k) = F(|k|)

As stationarity cannot usually be verified the second order stationarity definition is usually used. This

definition means that the autocovariance is a function only of ‘the gap’.

Returning to the model Y(¢) = p(t) + X(t) it is clear that X should be a stationary process such as a Normal

random variable with mean 0 and variance ¢?. When working with dependent random variables it is
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usually fairly easy to calculate means. However, for variances recall that

var XY = var X +varY —2cov (X, Y)

Smoothing Data

In order to observe trends in data it is advantageous to ‘smooth’ the data, in the hope of removing local
variations and revealing global variations. A smooth line through the data may be plotted with the aid of a

moving average.
Definition 3 Let y1,Y2,...,Yn be observations then
p
St = Z WilYt+j
j==p
where t takes values p+1,p +2,...,n — p is said to be a moving average of order 2p + 1. Usually w; > O0Vj and
Z] w] =1
If a moving average is calculated with order equal to a seasonal period then cyclicity in the data will be
smoothed out.
Another method to smooth data is differencing. This is usually represented in terms of the differencing
operator D where

Dy =yt —yi—1 and D2y =Dyt —yi—1) = Y1 — 241 + Y12
Plotting differences will make apparent when a stationary process is reached, and at most D? tends to
suffice.

Processes

As usual linearity is highly desirable. A general linear process may be expressed in the form
Y(t) =& + &1+ Pogr2+ ...

where 9 = Tand ¢; ~ N (0, 02) are independent. Calculating the variance of this,

varY(t) = o2 i i

i=1

so it is necessary for this sum to converge for a linear process. Absolute convergence is also required. A
useful choice for the ¢s is, say ¢; = ¢/ for some |¢| < 1, so the distant past has much less effect on the value
if Y(t) than the recent past.

Definition 4 Let &; ~ N (0,02) be independent, then the moving average process Y ~ MA (q) is defined as
Y(t) = e+ 0616, 1+ e 2+ + 058

which is a stationary process.

Definition 5 Let &; ~ N (0,02) be independent, then the autoregressive process Y ~ AR (p) is defined as

Y(#) = ¢1yi—1 + Payi—1+ -+ PpYr—p + &
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An autoregressive process is not necessarily stationary. It is of interest, therefore, as to under what condi-
tions such a process is stationary. If EY; ; = 0 for all j > 1 then clearly the process is stationary, but of

course this is not generally the case. In the case of an AR (1) process

Yt = Qyr1+ e
= ¢ (pyi—2 +&_1) + & by substituting for y;_q

J-1
= 2 (P]Stfj + ‘Pjytf]
j=0
Hence when |¢| < 1EY; — 0as ] — oo because all the ¢s have mean 0. In the general case

Ye=Pryi—1+ Py + -+ Ppyr—p + et
EYi=¢1Eyr 1+¢Eyr 2+ +¢pEyr—yp
= @1pp—1 — - — Pppr—p =0

where y; = EY;. This last equation is a difference equation* Looking for solutions of the form y; = Ax’

where A is some constant gives

Axt — Appxtt — o — A([Jpxt_p =
AP (xp O ‘Pp) -0

This yields a characteristic polynomial the solutions to which, my,my, ..., mp, determine the solutions for
the various values of y for example p; = Aym} + Aymb + - + Apm;,. In the case of a repeated m; = mjy
use

e = (A + Aytymt

In the case of complex roots m; = a + i and my = a — i use

pe = Ar(a + i)' + Ap(a — ip)’
= r'Ccos (6t + D)

Whatever roots are found it is clear that if all roots lie within the unit circle in the Argand plane then py — 0

as t — co. Hence a condition for stationarity has been determined.

Definition 6 The lag operator (or backward shift operator) L has the effect Ly; = y;_1 and hence L¥y; = y;,_y. The
operator L~ is called the lead operator (or forward shift operator) and has the effect L'y = y41.

Use of the lag operator can much simplify the expression of processes. While the autoregressive and moving
average processes are useful they may be combined to form an ARMA (p, q) process. If y; ~ ARMA (p,q)
then

yt=¢1yr 1+ Ppyr—p e+ 0181+ +0hey

Using the lag operator this may be written as
$(L)yr = O(L)e;

where ¢(L) =1 — ¢, L — ¢pL? — - — ¢, L7
and O(L) = 1+ 6;L + 6,12 + - - - + 6, L1

*Difference equations behave rather like ordinary differential equations with constant coefficients.
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The polynomials ¢ and 0 are called the associated polynomials.

Similar to the autoregressive moving average process is the autoregressive integrated moving average pro-
cess, ARMA (p, d, q). This is defined by
PL)Dy; = O(L)ey

where D = 1 — L is the difference operator.

Consider now an AR (p) process, ¢(L)y; = €. If ¢ could be inverted this could be expressed as an infinite
moving average process y; = (L)e;, say. Using this
yt = P(L)et
P(Lyye = PLIP(L)er

from which it must be the case that ¢(L)ip(L) = 1. This method as avoided the issue of the existence of

¢~ (L), though if it does exist is is easy to construct a circular argument.

Invertability

Thus far processes have been presented and their autocorrelation and autocovariance calculated. In reality
it is more usual to receive data and then to ask “what process is this”. The estimation of parameters is

discussed in Section 28.2.

Itis important, therefore, that given a sample autocorrelation and an MA (1) process different people should

infer the same value for 6. Consider the MA (1) processes

1
Y =¢ + 98[_1 Xy =g+ éstil

These processes may now be ‘inverted’ to give

Yi 272
= —— =1—-0LY; +6°L°Y; — ...
T IeL et !
X; 1 1,
= =1—-LX —L°Xy— ...
€t 1+%L ] t+62 t

Assuming stationarity and that IEY; = 0 the autocovariance and autocorrelation functions for the process
in Y; can now be found.

7(0) = var Y; = (1 + 6%)0?
7(1) = cov (Y3, Y1) = E(Y;Y,_1) = E (stet,l 063 |+ Oerey_p + 92st,1st,2) — 002

yk)=0 fork>2
Dividing by (0) now gives

9
1+ 62

with p(k) = 0 for k > 2. However, if 0 is replaced by % the expression for p is unaltered. Now, suppose

pO) =1 p(1)=

that p(1) is a sample autocorrelation. The equation p(1) can then be solved for 6, and is a quadratic hence
yielding two solutions 91 and 6,, but which of these is correct? In some special cases the roots may be the
reciprocal of eachother in which case it doesn’t matter, but this is not generally the case. In order to resolve
this take by definition |6] < 1 so that the sequence expansion for Y; is convergent (and hence the process is

invertible).
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(28.1.2) Autocovariance And Autocorrelation For Processes
Moving Average Processes
A moving average process MA (g) is defined by
yr =€+ 0181+ +05e
the autocovariance of this can be calculated as follows
(k) =E (Yt = EY}) (Yrix — EYipp)

—EY,Y,.x butcov(X,Z)=E(XZ)~EXEZ

= cov (Y4, Yiik)
Now,

Yek =€+ 018 g1+ g2+ +e gy

Since E 0;0; = o? this gives

2 -k :
T 0,0; fk<
(k) = {‘7 21:1 iYitk 1 q @)

ifk>gqg

Hence the autocorrelation, p(k) = %, is zero for k > g which should be noted when viewing plots of

sample autocorrelation, and such a feature may suggest the use of a moving average model.

Autoregressive Processes

An autoregressive process AR (p) is defined by

Ve =¢r1ye—1+ ayro+ -+ Ppyi—p + &

Stationarity is assumed and without further loss of generality assume [E Y; = 0 for all i. By the independence
of g;, EYier = ]Es% = 02. Hence y(k) = E Y;Y;_i. Now,

Ye=P1ye—1+ Poyr—2+ -+ Ppyr—p + & now multiply by v«
YYi—k = Pk T P2Yt—2Yi—k T+ PpYt—pYi—k + €Yt NOW take expected values
vy = p1y(k = 1)+ doy(k —2) + - - - + ppy(k — p)

Now, varY; = E (YtZ) —(E Y,f)2 and since E Y; = 0 this gives var Y; = (0). Assuming this is not zero the

autocovariance function can be divided by it for all values of k to give

1 =101+ 202+ +Pppp
p(1) = @1+ ¢20(1) + P30(2) + - - - + Pppp 1
p(2) = ¢1p(1) + ¢2 + P3p(1) + - - - + Ppp(p — 2)

p(3) = @102 + 101+ P53 + Pap1 + - + Pppp—3 ®)

p(p) = p1o(p — 1) + dop(p —2) + -+ + ¢y

These are the Yule-Walker equations, with the exception of the first. These p equations in p unknowns (the

¢s) can be used to estimate the values of ¢ from sample autocorrelations p;. Alternatively the autocorrela-
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tions of a known autoregressive process could be found. In matrix form they may be expressed as
2=CE+dPxe or E= (I—<I>)713e

Besides using linear algebra the kth Yule-Walker equation can also be solved as difference equation allowing

any of the equations to be calculated without knowing the others. In
pk) = g1tk = 1) + pop(k = 2) +- - - + Pppp(k — p) ©)
put p(k) = Aclkl to give a pth order polynomial in c identical to the characteristic equation.
At this point attention is drawn to the difference between the characteristic equation and ¢(L). The way the
characteristic equation is constructed means that if
¢L =1L+ goL? + -+ ppLP

then the characteristic equation is
PP + oxP T -+ ¢y

The roots to these equations are closely related: they are reciprocals.

Solving the characteristic equation gives values for c so that
-
o) = Y Auc]
i=1

Using k = 0 gives Zle A; =1 = p(0). Now, as the Yule-Walker equations are known equation (9) can be
substituted into them and hence the A;s determined. Hence when the unknown constants in equation (9)

are found it is possible to find any of the autocorrelations.

Autoregressive Moving Average Processes

Generally an ARMA (p,q) process is of the form ¢(L)y; = 6(L)e; and has rather a lot of parameters. It
is worth noting that should ¢ and 8 have a common linear factor then it can be cancelled to give an
ARMA (p — 1,9 — 1) process.

Autocovariance

Given the involvement of polynomials it should come as little surprise that a generating function for auto-
covariance may be useful. Since an autoregressive process has an infinite moving average process represen-

tation it is sufficient to consider such representations and in doing so cover general ARMA (p, q) processes.

Theorem 10 Where g(L) = i (k) LK, (L) = p(Lyp(L~1)o?.

k=—o0
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Proof. Extending equation (7) to an infinite moving average process;

(o)

1) = Y ik

j=0

sogl)=c*Y Y 1Pj1Pj+kLk

700]':0

[e9] [e9)
o? Y ) tpjlpj+kLk because ¢; = 0 for j <0
j=0k=—j

o 00 o0

o? YY) 1/’ijlLl*j wherel = k + j

j=0j=01=0
;L (Z L )
j =0

PPl ™) O

I
qI\J
e

0

(28.2) Parameter Estimation

(28.2.1) Effect Of Dependence
Estimating Mean And Variance

It is usual to estimate the mean and variance of a distribution with the estimators

n

_ 1 -
p=y and & =— ) -7’
i=1

However, when the assumption of independence is removed the variance estimate may become very inac-

curate because of the covariance structure of dependent random variables.

Suppose that Y7,Y,..., Y, are not independent, then EY = y still holds and so can be estimated by the

sample mean. However, for the variance,

_ 18
varY = var ( Z Y,)
mia
1 n n
= Z ZCOV (Yi,Yj>
i=1j=1
1 n—1 cov (Yi,Yj>
= 20" +20% Y (n—k)p | recalling that p(Y;, Y}) = ————t
n k=i (varYj)(varY))

The summation term here may make the variance of Y much larger, or perhaps much smaller, than ”72,
so clearly s? cannot be used as an estimator. The size of this change is dependent on the autocorrelation

function, p.

Calculating the variance in practise is just a case of substituting in some numbers. For example the MA (1)

process

1
Yt = €t — §€t71
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gives autocorrelation function

202 ifk=0
=97,

S0 if k| =1
o M =2

= A000 5

All other values of the autocorrelation are zero as y(k) = 0 for |k| > 2. Hence substituting

— 1
varY = — (mrz + 202

—2n—1)\ _ 3c?
n2

. on—1
5 NS—nbyusmg ¥ ~1

Similarly for an AR (1) process, y; = ¢y;_1 + ¢; the autocovariances are given by p; = ¢/

Sample Autocovariance & Autocorrelation
Besides estimating the mean and variance the autocovariance can be estimated by

1 n—k
YRy = —— ) Gt — W@ — 1)
t=0

Replacing u by its estimate, 1/, produces a small bias which tends to zero as 1 increases. A different estimator
is

11"k

k) === Wkt — N~

nn =
This has a smaller mean square error and is easier to calculate due to the simpler factor. Now, as k increases
there are less and less data from which the autocovariance estimate can be calculated. For values of k that
are near 1 the estimate is, therefore, very inaccurate. Furthermore, assessing such an estimator by calcu-
lating its variance is a rather unwieldy process, involving the expected value of a ratio. While asymptotic

approximations may be found this is still, essentially, a job for a computer.

Having observed data the objective is to find a suitable model. Instantly this suggests the use of a hypothesis
test. The null hypothesis is that the data are independent, and there is no time series structure. The sample

autocorrelation, r, = %8 can be used for this. The expected value of ry is approximately zero, and the

variance is approximately % The interval <&—%, ﬁ) is an approximate 95% confidence interval, and so

values of ry lying outside this are sought.

Testing For Randomness

In conducting hypothesis tests for independence it is important to remember that while independence im-
plies (theoretical) uncorrelation, the reverse implication is not true. Nothing can be deduced, therefore, if

such a hypothesis test does not reject the null hypothesis.

It is usual to test using rg as any model is likely to have a high correlation with the first of past observations.
Choosing to test at other lags suggests at least part of the model is already known, though: under what

justification does one test ry4, say, if the model is unknown?
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The Van-Neumann Ratio

The Van-Neumann ration is defined as

n YR, Wk — Yk—1)?

VNR = -
n—1 Y (k—7)?

~2(1—r) 11)

From the approximation observe that
VNR — 2asry — 0 VNR — 0" asr; — 1~ VNR — 47 asry — —17

From this a number of tests may be devised.

o Testing for positive correlation. Take as the null hypothesis that the data are independent. The alter-

native is positive correlation, so reject if the statistic is small.

o Testing for negative correlation. Take as the null hypothesis that the data are independent. The

alternative is negative correlation, so reject if the statistic is large.

The reasoning for this test is made clear by looking at the graph of the approximate van Neumann ratio.

Note that for large values of n the ratio has an approximate

2n 4
N(n—l'ﬁ)

distribution.

The Portmanteau Test Statistic

The more general Portmanteau test was proposed by Box and Pierce in 1970 and can be used to test whether
sample autocorrelations are non-zero. For an ARMA (p, d, q) model the statistic is

k
Q=@m—-d)y r
i=1

where 7; is the ith sample autocorrelation. This statistic was thought to have a X%_ p—q distribution, becoming
large when the model is inappropriate. However, it is not very powerful and a better Portmanteau statistic
is

2

ko2
* 1

which is larger than Q (suggesting the power of the test is greater).

The Portmanteau test uses autocorrelations to test whether the sample is nothing more than noise. If some
of the autocorrelations are high then the sample may have some structure and the Portmanteau statistic will
be large. It may be useful to consider many Portmanteau statistics, summing to 12, then to 24, etc. However,
if the first 12 are tested and a conclusion drawn the test for the first 24 must surely be somehow conditional.

Nevertheless, such tests are common.

(28.2.2) Estimating Parameters

Once the form of a model has been decided upon, the next stage is to estimate the parameters of the model.
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Moments

The method of moments? for parameter estimation simply estimates moments by the sample moments.
For an AR (p) process there are the p values for ¢ to estimate, and the variance of the innovation, ¢?. The
Yule-Walker equations (equations (8)) provide a method by which suitable estimates may be found. The
equations @ = (E + Pa can be solved for (E when @ is replaced by r, the sample autocorrelations. The

quantity
Y wi—-7)

n-135

estimates the variance of the process Y;, but not o2

Recall the problem of invertability, Section 28.1.1, that when faced with an option about the value of a
parameter the one with size less than 1 should be chosen. For an MA (1) process it has already been shown

that
0

T 1t
However, certain values of the sample autocorrelation may produce complex roots in which case it is not

P1
really possible to estimate the parameter. For a MA () process the equations to solve are rather unwieldy;

Yo 67

q—k p.
Lig 00 for1<k<1
Pk =
0 otherwise

These equations are very non-linear, so should they need solving numerical methods would need to be

used.

Conditional Least Squares

With least squares estimation parameters are chosen so that the sum of the squares of the differences be-
tween the data and the values predicted by the model—the expression for ¢;—is minimised. Hence
- 2
S =Y (=W —¢1e1 =W —p2e2—p) = = Ppyi—p — 1)
t=p+1

is to be minimised for an AR (p) process. This gives

as* n
Sy = 0= 2= g1 = =) —p=1) Y (=) = 1y — ) = = Ppip — 1))
H t=p+1
0=-2 ) (yr—w1— —Ye—ppt—p) =201 —p =Dl — 1 — - — ¢p)
t=p+1
] — 1 - —_ —_— e e —
A T (T R IR PR Yoo

*The first moment is the mean and the second is the variance.
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Observe that {1 is approximately i. As ¥ is much simpler it is preferred as the estimator for the mean of the

process. For the other parameters,

as*

S }: Gi—=D (e =) — P11 — 1) = 22— 1) — - = PpWe—p — 1))
(pl t=p+1
0 =cov (yt,Ys—i) — p1coV (Ye—1,Yt—i) — = — Pi—1 €OV (Y41, Y¢—i) — Pivary,—
= it coV (yyﬂel/yz) — = pcov (Yi—p, Vi)

Dividing through by var y; gives one of the Yule-Walker equations, and producing such equations for each i
produces a set of p linear equations in p unknowns—the ¢s. Note the covariance stated above is the sample

covariance, so this produces the same estimates as the method of moments.

For a moving average process finding least squares estimates is not so easy. For an MA (1) process assume
g9 = 0. The error for the ith datum is then given by ¢; = y; — f¢;_1 so that

this is a polynomial of order n in 6 and must be minimised for 6 € ( — 1,1), which is best done using
numerical methods.

Maximum Likelihood

Maximum likelihood works by taking a joint density function evaluated at the observed data and treating

it as a function of the parameters.

Take for example an AR (1) process y; — pt = ¢(y;—1 — p) + & where

N/\/<0 2) ()741 ;S%
€ , o sofst—gmexp 752

The joint distribution of the errors is then the product of these. Conditioning is now done on y;, which
essentially means that it is necessary to know y; or assume some value for it. The joint density function for

the data is then given by changing variables from ¢ to y in the above. Hence

—(n=1)

eXP( i -1 — ))2)

fW2y3, . yn | y1) = (2%02)

Now, y; is Normally distributed, has mean y, and variance % as is easily shown. This gives a probability
density function for y;

V1-¢? (*(m ,H)z(1,¢z))
= ex

f (yl) - \/277_[ p 202

Multiplying this with the conditional density function already found gives the joint density function re-

quired: the likelihood.

L(YI(P/ l’{) =

V1—¢? —(y1 — w1 — ¢? 1 L
me; exp ( 1 ;?Tz( ) _ ; Wyt —
(y1— u)z(l )

1 - 1 v
I= (1 —¢) - JIn@rod)+ o 5 t:Zz (e =1 — pyra — )

— ¢yi—1 — 1) )
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Now, the third term is in the form of ¢ = 1 in the summation, putting yo = y;. This simplifies to the

unconditional sum of squares so that

_ 1 2 n 2 1
—Eln(1_¢ )—Eln(ZmT )—ES(V,CP)

This can now be differentiated to find parameter estimates. As may be expected 62 = %S (11, §) though the

equations for /i and ¢ must be solved numerically.

(28.2.3) Quality Of Estimates
Variance Of Estimates

From a maximum likelihood perspective parameters ff are estimated by solving % = 0 and the central limit
theorem ensures that /n(ff — ff) is asymptotic to a multivariate Normal distribution with the information

matrix being asymptotically proportional to the variance-covariance matrix.

Residuals

HAving fitted an ARMA (p, q) model it is necessary to test its adequacy which is usually done by comparing
the estimated residual ; and comparing to €;. For an AR (p) process

P

vi—p=Y iy —p) +e
i=1
p ~
so & = (yr— ) — Y Pilye—i — 1)
i—1
This can be calculated for p +1 < f < n.
For an MA (gq) process

q
Vi=p+er+ ) 0ge
i=1

However, the first g terms are discarded as many terms are missing from their estimation. While this has
an effect on the last n — g terms these are estimated by the correct number of past terms and so are more

reliable.

For an ARMA (p, q) process the result is simply a combination of the above 2 so that

=
K

=y ——) ity — ) — ) 0
i=1 '

i=1

However, the first few terms must be disregarded. The number dropped is the larger of p and 4.

Having calculated the residuals it is now possible to perform a Portmanteau test.
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(28.2.4) Prediction
Minimum Mean Square Error Estimation

Having estimated parameters it is now desirable to use the model to estimate the future. Consider first of

all prediction when the parameters are known.
Given y1,12, ..., yn predict [ steps ahead ‘optimally’ by the value

Jryyr = E (yT+l|T>
where “y7,;r” means that values of y up to y7 are known. The error in prediction for some general predic-
tor §is Y7 — Y1411 SO
Y1 — 91007 = Y13 — EYT00T — (?TH\T - ]E]/TH\T)
A A 2
MSE <yT+l\T> =varyryr+ (VTH\T - IE]/TH\T)

So i = 7 is optimal in the sense that the mean square error is minimised.

Actually calculating an estimate in practise is quite easy as it is just a case of calculating expectation. Either
¢; is known in which case E ¢; = ¢; or it is not known and so E ¢; = 0. Similarly if y; is known then E y; = y;
whereas if it is not known then y; must be substituted for using the autoregressive process given so that the

index can be reduced to give values of y that are known.

To predict many steps ahead it is necessary to predict all previous steps ahead, which may be expressed in

the relationship y7; = f(yp + 1) + €141-

Having predicted values the prediction error is of interest. Finding the infinite moving average representa-

tion of the general ARMA (p, q) process and the prediction for it,
(o)
YT = ) PiYTHI-i
i=0

1 oo
=Y Vier—j+ Y PiETi—j
= '

j=l

! oo
=) Y jeryj+ Z Yryjer—j puttingj—I—jandj— j+I
j=0 j=0

Now taking conditional expectation (conditional on T) the second summation is completely determined and
gives the (minimum) mean square error of y7;, which is also the prediction of y1. ;. The other summation

is therefore the error in prediction. The mean square error of this prediction error is
2 o 2 2, 2 2
E (]/T+l - 37T+I|T) =) yijot=0 (1 tyrtr et ¢171)
j=1

If the ¢;5 are Normally distributed then

Fror 1.96(7\/1 T

is a 95% prediction interval for y;.
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Using Estimated Parameters To Make Predictions

Without knowledge of what the model parameters are, or even what the model is, it would be expected
that the predictions will be less precise. The same estimation process is used, but the estimate is now called

ir T and is calculated using the estimates ¢ and (E for * and CE.

Consider the simple AR (1) case where 1 = ¢'yr and Jr, T = #'yr. The prediction error is

Y1 — Jrr = <yT+1 - y~T+l\T> + (?T+1|T - ?hzw)
= <yT+1 - ?TH\T) +yr (431 - 4’l>
MSE (g*T+l\T> = MSE (37T+1|T> +y7E (431 - 4’1>2

Predicting many steps ahead requires many parameter estimates. Consider predicting only 1 step ahead,

then E (qsl - (])1)2 = var ¢.

Hypothesis Testing

Likelihood ratio tests can be used to test the relative worth of various models. As usual the models must be
nested, but further restrictions apply as an ARMA (1, 1) cannot be tested against an ARMA (2, 2) because of
difficulties estimating the extra parameters from the null hypothesis. Note also that the models ARMA (1,2)
and ARMA (2, 1) are not nested.
The likelihood ratio test statistic R
_ L(ao)
L(&

is calculated where & is the estimate of « (or ff) constrained to the conditions of the null hypothesis. & is the

maximum likelihood estimate. —sIn A has an approximate x2, distribution where there are m constraints in

the null hypothesis.

Sums Of ARMA Processes

The sum of two uncorrelated ARMA processes is an ARMA process known as the reduced form. Say X; is
an ARMA (p1,41) process and that Y; is an ARMA (pa, 92) process. Then Z; = X; + Yy is an ARMA (p,q)
process where p < p1 + pp and g < max{p1 + g2, p2 + 41 }-

Suppose that X; is the process ¢»(L)x; = 0x(L)e; that that Y; is the process (py(L)yt = Gyr]t. Each of these
expressions is multiplied through by the autoregressive part of the other. Hence

Px(L)xr = Ox(L)er =y (L)Px(L)xt = dy(L)0x(L)es
Py(L)yr = 0y (L)1 —Px(L)py(L)yt = Px(L)8y (L)1t
Now adding,
Px(L)py(L)(xt +yt) = ¢y(L)Bx(L)er + Px(L)8y(L)7t
The left hand side is at most an AR (p; + p2) process, and from the right hand side it is evident that g <

max{pi + 42, p2 + 91}

The inequalities are used because if ¢x(L) and ¢,(L) have common factors then only one copy of the factor
is used in the definition of ¢, (L) = ¢x(L)¢y(L). Therefore if ¢x(L) = ¢y(L) then ¢, (L) = ¢x(L) = ¢y(L).
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(28.3) Analysis By Frequency

(28.3.1) Modelling Time Series Using Functions

An alternative way to model time series it to use some kind of function of time. The functions may be

chosen to represent trends and cyclicity in the data, as is discussed in Section 28.3.2.

Suppose that a time series Y; has a periodic component of known frequency, then it may be modelled by

Y = Rcos (wt + 0) + ¢
= wcos (wt) + Bsin (wt) + &

where w is the frequency (in radians), R is the amplitude, and 6 is the phase. An alternative parameterisation
takes f = 5% which is the number of cycles per unit time, giving % as the wavelength. Linear regression
can be used to find « and  which are assumed to be independent random variables with expected value 0,

hence giving a stationary process. Combining different cyclic components gives
k
Yy =) Rjcos(wjt +0;) + €
j=1

which is stationary whenever the R]- are uncorrelated random variables with mean 0, or when the 9]- are

uniform on the interval (0, 277).

Spectra

The power spectral distribution function F(w) is defined for a stochastic process with autocovariance func-
tion (k) such that

() = /0 " cos (wk) dF(w)

If F is differentiable then where f(w) = dw is the spectral density function this may be rewritten as

0= /O " cos (wk) f(w) dw

It is possible to relate f(w) to y(k) by the functions

f(w) = ( 0)+2 Z v(k) cos (wk)>

k=1

Z 'y(k)e_””k

k*—oo

These expressions are called the spectra, and the second can be calculated by replacing L with ek in the

autocovariance generating function.
For an MA (1) process y; = € + 0¢;_1 so

fw) = ((1 + 602 + 2007 cos w)

S’\%S’\H

<1 +6%+26 cosw)
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For an AR (1) process

1 o2 o (P‘k‘ )
W= —5+2), ——5 k
f r <1_¢2 kgl _(chosw

o? >
= A=) (1 +2)° 4)““ COSZUk)

k=1

(28.3.2) Time Series Decomposition

The decomposition of time series was developed in the 1920s, and as such can be done without the aid of
a computer (unlike most of the preceding material). A time series is modelled as a composition of pattern
and error, and the pattern may consist of numerous components such as overall trend, seasonality, etc. Such

models may be either additive or linear, so

Xy =L+Ti+C +E;
Xy = L T;C+E;

where I is a seasonal index, T is overall trend, C is cyclicity, and E is error. The various components are
gradually deduced then removed from the data to allow further analysis. The following discussion is for the
multiplicative model, and by replacing division by subtraction is readily modified for the additive model.

First of all use linear regression to fit an overall trend. In exceptional circumstances a quadratic trend may
be used. This will give a linear model for the data which is likely to fit poorly. Divide each datum by the
corresponding fitted value, hence ‘detrending’ the data.

The seasonal indices are obtained by dividing the detrended data by a moving average of length equal to
the seasonal period. For each season the centre of the distribution for that season is estimated—Minitab uses
the median. This value is taken as the seasonal index and each datum may be divided by the corresponding
seasonal index in order to obtain the seasonally adjusted data. It is usual to adjust the seasonal indices so

that their average is 1. (0 for the additive model.)

The choice of multiplicative or additive model is often down to personal preference. However, note that a

multiplicative model is suggested when the size of a seasonal pattern is proportional to the trend.



