
Chapter 23

MSMYS3 Statistical Theory

(23.1) Statistical Inference

(23.1.1) Bayesian & Frequentist Inference

Problems With Bayesian Inference

Suppose X1, X2, . . . , Xn are independent and identically distributed random variables. Let x be a random
sample, then what information about the distribution of the Xs can be found from x?

Let the distribution of the Xs be determined by a function f (x, θ) where θ is some parameter.

• In Bayesian inference define L : Θ → R+
0 by L(θ) = f (x, θ). The distribution p(θ | x) is then determined

by Bayes’ formula for which a distribution for θ is required.

• In frequentist inference it is usual to choose the value of θ which maximises the likelihood function L.

• Alternatively define a function θ̂ = T(x) to estimate θ.

Bayesian inference requires a distribution to be specified for θ. It is more generally the case that nothing at
all is known about θ—not even its distribution. There is another problem with Bayesian inference. Recall
Bayes’ formula

p(θ | x) =
L(θ, x)π(θ)∫

Θ L(θ′, x)π(θ′) dθ′

where π(θ) is the prior distribution for θ. Observe this expression is uneffected when L is multiplied by
anything not dependent on θ—a function of the data c, say.

Let E and E′ be experiments for which L(θ, x) = cL′(θ, x′). Then p(θ | x) ≡ p(θ | x′). The same inference is
made from each experiment. This is the Strong Likelihood Principle.

The alarming consequences of the strong likelihood principle are easily illustrated. Suppose two experi-
ments have the following results:

• X ∼ Bin(N, θ) and X = 1 is observed. Hence L(θ) = Nθ(1− θ)N−1.

• Observe a sequence of Bernoulli trials until the first success occurs (geometric distribution). If X is
the number of trials conducted then if X is observed to be N, L′(θ) = θ(1− θ)N−1.

Consider the example of throwing a coin. In the first experiment one head could appear anywhere in the N
throws. In the second experiment the one head must appear last. Clearly this is much less likely, and the
factor of N takes this into account. However, N does not depend on θ so the inference process does not take
this into account.
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Point Estimation

Frequentist inference makes estimation about θ from a single data point x. If θ̂ = T(x) is an estimate for
θ then the random variable T(X) is an estimator for θ. As T(X) is a random variable, it has a mean, a
variance, and a distribution called the sampling distribution. The sampling distribution of an estimator is
very important in assessing the accuracy of an estimator.

Definition 1 An estimator θ̂ for a parameter θ is unbiassed if E T(X) = θ for all possible values of θ.

The bias of θ̂ is then given by E (T − θ) = ( E T)− θ. Although unbiassedness is clearly preferable, it is not
of great importance. What is important is the consistency of an estimator.

Definition 2 Let θ̂ = T(X) be an estimator for a parameter θ. θ̂ is a consistent estimator for θ if

∀ε > 0 Pr{|T(X)− θ| > ε} → 0 as n → ∞

It is usually best to establish consistency using the mean square error,

MSE
(
θ̂
) def= E (T(X)− θ)2

Lemma 3 MSE
(
θ̂
)

= var (T(X)) + (bias(θ̂))2.

Proof. Since θ is a constant, var (T − θ) = var T. Hence

var (T(X)− θ) = E (T(X)− θ)2 − (E (T(X)− θ))2

= MSE
(
θ̂
)
−
(
bias(θ̂)

)2
�

From this it is immediately obvious that MSE
(
θ̂
)
→ 0 as n → ∞ ⇔ var (T(X)) → 0 and bias(θ̂) → 0.

Lemma 4 If MSE
(
θ̂
)
→ 0 as n → ∞ then θ̂ is a consistent estimator of θ.

Proof. Let g(x) be the probability density function of T(X). Then

Pr{|T(X)− θ| > ε} =
∫
|t−θ|>ε

g(t) dt

6
∫
|t−θ|>ε

(t− θ)2

ε2 g(t) dt

6
∫ ∞

−∞

(t− θ)2

ε2 g(t) dt

=
1
ε2 E (T(X)− θ)2

=
1
ε2 MSE

(
θ̂
)

�

From this it is evident that θ̂ is consistent if both its bias and variance tend to 0 as n → ∞.

The Logarithm Of The Likelihood Function

When finding a maximum likelihood estimator it is common to work with l(θ, x) = ln (L(θ, x)). Now, L(θ, x)
is the joint pdf of X1, X2, . . . , Xn (and so is itself a probability density function), and since these are indepen-
dently and identically distributed,

L(θ, X) =
n

∏
i=1

f (xi, θ)
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Theorem 5 E
∂l(θ, X)

∂θ
= 0

Proof. Since L is a pdf it must have the property∫
L(θ, x) dx = 1 ∀θ ∈ Θ

so
∂

∂θ

∫
L(θ, x) dx = 0

Provided the limits of the integral do not depend on θ,

∫
∂L
∂θ

dx = 0

Note that since l = ln L, ∂L
∂θ = L ∂l

∂θ . Hence

∫
∂l
∂θ

L dx = 0

Since L is a pdf and the equation holds for any x this equation is, by definition, the expected value of ∂l
∂θ .

Hence the proof is complete. �

Note that
∂l(θ, x)

∂θ

def= u(θ, x)

is called the score function. Differentiating again gives

∂

∂θ

∫
∂l
∂θ

L dx = 0∫
∂

∂θ

(
∂l
∂θ

L
)

dx = 0

∫
L

∂2l
∂θ2 +

∂l
∂θ

∂L
∂θ

dx = 0

∫
L

(
∂2l
∂θ2 +

(
∂l
∂θ

)2
)

dx = 0

Hence using the linearity of the expectation operator and the fact that this holds for all x,

E

(
∂l(θ, X)

∂θ

)2
= −E

∂2l(θ, X)
∂θ2

def= Iθ

Iθ is the expected Fisher information. Observe that since E u(θ, x) = 0 the above equation may be re-written
as var (u(θ, x)) = Iθ .

The Cramér-Rao Inequality

The Cramér-Rao inequality provides a lower bound for the variance of an estimator. This is useful because
if an estimator is found to have variance equal to this lower bound, a more efficient estimator cannot be
found.

Theorem 6 (Cramér-Rao Inequality) Suppose that T is an unbiassed estimator for τ(θ) where θ is some parameter.
Then

var T(X) >

(
dτ(θ)

dθ

)2

Iθ
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If T is an unbiassed estimator for θ (rather than τ(θ)) then clearly var T > 1
Iθ

.

Proof. Using the definition of expectation,

E T =
∫

T(x)L(θ, x) dx = τ(θ) now differentiate with respect to θ∫
T(x)L

∂l
∂θ

dx =
dτ

dθ

E

(
T(X)

∂l
∂θ

)
=

dτ

dθ

Recall now that
cov (U, V) = E ((U −E U) (V −E V)) = E (UV)− ( E U)( E V)

From this it is clear that since E
(

∂l
∂θ

)
= 0

cov
(

T(X),
∂l
∂θ

)
=

dτ

dθ

Now using the result ( var U)( var V) > ( cov (U, V) )2,

( var T(X))
(

var
(

∂l
∂θ

))
>
(

dτ

dθ

)2

Hence the result. �

Definition 7 If T is an unbiassed estimator for θ then the efficiency of T is given by 1
Iθ ( var T) .

Now, since cov (U, V) = ( var U)( var V) ⇔ U and V are linearly related, T must attain the Cramér-Rau
lower bound when ∂l

∂θ = aT + b where a and b depend on θ but not X. This occurs when T is perfectly
efficient, i.e. has efficiency 1. The following situation has arisen

Cramér-Rau bound attained ⇔ T is efficient

⇔ var T =
1
Iθ

⇔ T = aθ + b from covariance result in proof of Cramér-Rau

Lemma 8 Let T be an unbiassed estimator for a parameter θ. Then

T is efficient ⇔ ∂l
∂θ

= (T(x)− θ)Iθ

Proof. Now, T being efficient is equivalent to the Cramér-Rau bound being attained, and so ∂l
∂θ = aT + b.

The proof therefore relies on finding values for a and b.

0 = E

(
∂l
∂θ

)
= a E T + b = aθ + b

So b = −aθ. Multiplying ∂l
∂θ = aT + b by ∂l

∂θ and finding the expected value again,

Iθ = E

(
∂l
∂θ

)2
= E

(
aT

∂l
∂θ

+ b
∂l
∂θ

)
= a E

(
T

∂l
∂θ

)
+ b E

(
∂l
∂θ

)
= a

The last equality holds because since E ∂l
∂θ = 0, E

(
T ∂l

∂θ

)
= cov

(
T, ∂l

∂θ

)
which by hypothesis is 1. Now
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substituting for a and b with the values found,

∂l
∂θ

= Iθ T − Iθθ = (T − θ)Iθ �

(23.1.2) Sufficiency

Sufficient Statistics

Computing a statistic to estimate a parameter is all very well, but does a statistic make full use of the data?
What functions of the data is it required to calculate in order to extract all the (useful) information? This is
the question of sufficiency.

Definition 9 Suppose X1, X2, . . . , Xn have a joint distribution depending on some parameter θ. The statistic T = T(X)
is sufficient for θ if the conditional distribution of X given the value of T obtained is algebraically independent of θ.

This definition simply says that there is enough information in T to calculate the distribution of X without
having to refer back to the data.

Example 10 Consider n Bernoulli trials, so X1, X2, . . . , Xn are independently and identically distributed with Pr{Xi =
x} = θx(1− θ)1−x. Claim that T(X) = ∑n

i=1 Xi is a sufficient statistic for θ.

ProbX1 = x1 ∧ X2 = x2 ∧ · · · ∧ Xn = xn | T = t =
ProbX1 = x1 ∧ X2 = x2 ∧ · · · ∧ Xn = xn ∧ T = t

ProbT = t

=


ProbX1=x1∧X2=x2∧···∧Xn=xn

ProbT=t if ∑n
i=1 xi = t

0 if ∑n
i=1 xi 6= t

=


θx1 (1−θ)1−x1 θx2 (1−θ)1−x2 ...θxn (1−θ)1−xn

(n
t)θt(1−θ)n−t if ∑n

i=1 xi = t

0 if ∑n
i=1 xi 6= t

=


θ∑n

i=1 xi (1−θ)n−∑n
i=1 xi

(n
t)θt(1−θ)n−t if ∑n

i=1 xi = t

0 if ∑n
i=1 xi 6= t

=


1

(n
t)

if ∑n
i=1 xi = t

0 if ∑n
i=1 xi 6= t

Clearly this does not depend on θ, so T is verified as a sufficient statistic.

Clearly this process is rather tedious, and it would be a formidable task to do this for anything but the
simplest of distributions.

Lemma 11 T is a sufficient statistic for the parameter θ if and only if the likelihood can be factorised as

L(θ, x) = κ1(T(x), θ)κ2(x)

where κ1 and κ2 are non-negative functions.

Proof. (⇒)

L(θ, x) = Pr{X = x and T(X) = t} = Pr{X = x | T(X) = t} Pr{T(X) = t}
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where t = T(x). Assuming that T is sufficient, Pr{X = x | T(X) = t} is algebraically independent of
θ, hence define

κ1(T(x), θ) = Pr{T(X) = t}

κ2(x) = Pr{X = x | T(X) = t}

(⇐) Assume L(θ, x) = κ1(T(x), θ)κ2(x). Then when T(x) = t,

Pr{X = x | T = t} =
Pr{X = x and T = t}

Pr{T = t} =
Pr{X = x}
Pr{T = t} since it was assumed T(x) = t

=
L(θ, x)

∑T(x′)=t L(θ, x′)

=
κ1(T(x), θ)κ2(x)

∑T(x′)=t κ1(T(x), θ)κ2(x′)

=
κ2(x)

∑T(x′)=t κ2(x′)

Pr{X = x | T = t} =


κ2(x)

∑T(x′ )=t κ2(x′) if T(x) = t

0 otherwise

This is algebraically independent of θ, so T is sufficient. �

Minimal Sufficient Statistics

It is quite possible to find many sufficient statistics, but some of them could be better than others.

Definition 12 T is a minimal sufficient statistic for the parameter θ if

1. T is a sufficient statistic for θ.

2. If S is any other sufficient statistic for θ then T is a function of S.

Condition 2 seems a bit peculiar. Think, however, of a function as a bijective mapping—in its strictest form.
This condition then means that if S(x) = S(y) then T(x) = T(y). This will be of use later.

Suppose that T is a minimal sufficient statistic and that x and y are data observed from some experiment. If
T(x) = T(y) then identical inference should be made about θ. This is the sufficiency principle.

Clearly verifying the definition of a minimal sufficient statistic is not desirable. A simpler test is sought
instead. Consider a minimal sufficient statistic T, and define

1. the T partition of the sample space Ω,

Ω =
⋃
t

Et where Et = {x | T(x) = t}

This defines the equivalence relation ‘≡’ by

x ≡ y ⇔ T(x) = T(y)

2. the likelihood partition of the sample space Ω,

Ω =
⋃
α

Λα where Λα = {y | L(θ, y) ∝ L(θ, x)}
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for some particular x. Note that the constant of proportionality can be a function of x and y but not θ.
This defines the equivalence relation ‘∼’ by

x ∼ y ⇔ L(θ, x) ∝ L(θ, y)

Lemma 13 Let T be a statistic for which the T partition of the sample space is the same as the likelihood partition.
Then T is a minimal sufficient statistic.

Proof. Since the likelihood partition is the same as the T partition, the value of L(θ, x) can be determined
from the value of T(x) and no factor must depend on θ. Hence

L(θ, x) = κ1(T(x), θ)κ2(x)

hence by the factorisation criterion (Lemma 11) T is a sufficient statistic.

Suppose that S is another sufficient statistic. Then by the same argument

L(θ, x) = κ3(S(y), θ)κ4(y)

Hence

S(x) = S(y) ⇒ L(θ, x) ∝ L(θ, y) from above

⇒ x ∼ y

⇒ x ≡ y by hypothesis

⇒ T(x) = T(y)

Hence T “is a function of” S and so must be a minimal sufficient statistic. �

The Rao-Blackwell Theorem

Let X and Y be random variables. E (Y | X = x) is simply a number, but its precise value depends on the
value of x. The quantity E (Y | X) is therefore a random variable, and it is straight forward to show that
E ( E (Y | X)) = E Y. More information about conditional expectation can be found in Chapter ??.

Theorem 14 (Rao-Blackwell) Let T be a sufficient statistic for the parameter θ and let S be an unbiassed estimator for
θ. Define U = E (S | T) then

1. U is a statistic.

2. U is an unbiassed estimator for θ.

3. var U 6 var S.

Proof. 1. Since T is sufficient, the conditional distribution of X given T is independent of θ (by defini-
tion). Since S is an unbiassed estimator for θ it is certainly independent of θ and hence E (S | T) is
independent of θ i.e. is a statistic.

2. E U = E (E (S | T)) = E S = θ and hence U is an unbiassed estimator for θ.

3. var ((S− θ) | T) > 0 hence

E ((S− θ)2 | T) > (E ((S− θ) | T))2 = (E (S | T)− θ)2 = (U − θ)2

E
(

E ((S− θ)2 | T)
)

> E (U − θ)2

E (S− θ)2 = var S > E (U − θ)2 = var U �



8 CHAPTER 23. MSMYS3 STATISTICAL THEORY

If S is not a function of T then the inequality of the Rao-Blackwell theorem becomes strict inequality. The
theorem then shows that if a minimum variance unbiassed estimator exists, then there is a function of the
minimal sufficient statistic that is also a minimum variance unbiassed estimator.

Using this it is possible to produce relatively ‘nice’ estimators from really quite peculiar ones. Take for
example the task of estimating e−θ on a Poisson distribution. An obvious choice for an estimator is e−X , but
this is biassed. Consider the estimator S defined as

S = I{X1=0} =

1 if X1 = 0

0 otherwise

Because of the form of the Poisson pdf, this has expected value e−θ . Now, it is simple to show that T =

∑n
i=1 Xi is a minimal sufficient statistic for θ and hence the Rao-Blackwell theorem can be used.

E (S | T = t) = ProbX1 = 0 |
n

∑
i=1

Xi = t

=
ProbX1 = 0 and ∑n

i=1 Xi = t
Prob∑n

i=1 Xi = t

=
ProbX1 = 0Prob∑n

i=2 Xi = t
Prob∑n

i=1 Xi = t

=
e−θ θ1

1!
e−(n−1)θ ((n−1)θ)t

t!
e−nθ (nθ)t

t!

=
(

n− 1
n

)t

Hence the estimator (
n− 1

n

)∑n
i=1 Xi

is unbiassed for e−θ and has smaller variance than S.

Finding Minimal Sufficient Statistics

Definition 15 A probability distribution belongs to a k parameter exponential family if its pdf can be expressed in the
form

f (x, `) = C(x) exp

(
k

∑
i=1

Ai(`)Bi(x) + D(`)

)
where the functions 1, A1(`), A2(`), . . . , Ak(`) are linearly independent.

Most common distributions (with the notable exception of the uniform distribution) are exponential fami-
lies. Take for example the Binomial distribution.

f (x, θ) =
(

N
x

)
θx(1− θ)N−x

=
(

N
x

)
exp (x ln θ + (N − x) ln (1− θ))

=
(

N
x

)
exp

(
x ln

θ

1− θ
+ N ln (1− θ)

)
Lemma 16 If X1, X2, . . . , Xn are independently and identically distributed random variables with pdf f (x, `) then if f
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belongs to the k parameter exponential family

f (x, `) = C(x) exp

(
k

∑
i=1

Ai(`)Bi(x) + D(`)

)

then

T =

(
n

∑
i=1

B1(xi),
n

∑
i=1

B2(xi), . . . ,
n

∑
i=1

Bk(xi)

)
is a minimal sufficient statistic for `.

Proof.

L(`, x) =
n

∏
i=1

f (xi, `)

=
n

∏
i=1

C(x) exp

 k

∑
j=1

Aj(`)Bj(xi) + D(`)


= exp

 n

∑
i=1

k

∑
j=1

Aj(`)Bj(xi) + nD(`)

 n

∏
i=1

C(xi)

Hence where y is another vector of observations

L(`, x)
L(`, y)

=
exp

(
∑n

i=1 ∑k
j=1 Aj(`)Bj(xi) + nD(`)

)
∏n

i=1 C(xi)

exp
(

∑n
i=1 ∑k

j=1 Aj(`)Bj(yi) + nD(`)
)

∏n
i=1 C(yi)

Now put Tj(x) def=
n

∑
i=1

Bj(xi) to give

=
exp

(
∑k

j=1 Aj(`)Tj(x) + nD(`)
)

∏n
i=1 C(xi)

exp
(

∑k
j=1 Aj(`)Tj(y) + nD(`)

)
∏n

i=1 C(yi)

= exp

 k

∑
j=1

Aj(`)
(

Tj(x)− Tj(y)
) ∏n

i=1 C(xi)
∏n

i=1 C(yi)

This expression is independent of ` whenever Tj(x) = Tj(y) for all j (using the fact that the As are linearly
independent) and hence the L partition coincides with the T partition and T is minimal sufficient. �

(23.1.3) Maximum Likelihood Estimation

Calculating Maximum Likelihood Estimators

A maximum likelihood estimation ˆ̀ is simply the value of ` for which L(`, x) attains a (local) maximum. In
the one dimensional case this can be found by solving ∂L

∂θ = 0 or indeed ∂l
∂θ = 0. It is good practise to verify

the second derivative as being negative.

In the case of more than one dimension the equations ∂l
∂θ1

= 0 to ∂l
∂θk

= 0 can be solved, and verification as
maxima is done by computing the Hessian matrix and showing it to be negative definite.

The common distributions have familiar maximum likelihood estimators, with the notable exception of the
uniform distribution U [0, θ]. Of interest is censored data.
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Example 17 Suppose X1, X2, . . . , Xn are independently and identically distributed with

f (x, θ) = θe−xθ

for x > 0. However, Xi is only observed if Xi < T for some fixed T.

Let M be the number of observations actually made. Now, Pr{Xi < T} = 1− e−θT hence M ∼ Bin(n, 1− e−θT).
The distribution of Xi can now be found, given that Xi < T.

f (x, θ)
Pr{Xi < T} =

θe−xθ

1− eθT

Now let y = (y1, y2, . . . , ym) be a random sample, then the likelihood of y is given by the product of the pdfs for the
random variables which were observed, multiplied by the probability that those random variables were observed. This
gives

L(θ, y) =
(

n
m

)(
1− eθT

)m
e−T(n−m)θ

m

∏
i=1

θe−xθ

1− eθT

=
(

n
m

)
e−T(n−m)θθme−θ ∑n

i=1 yi

∂l
∂θ

= −T(n−m) +
m
θ
−

n

∑
i=1

yi

θ̂ =
m

(n−m)T + ∑n
i=1 yi

Theorem 18 If θ̂ is a maximum likelihood estimator then

1. θ̂ is invariant i.e. if φ is an injective function then φ̂ = φ(θ̂) is a maximum likelihood estimation of φ(θ).

2. θ̂ is consistent.

3. θ̂ is sufficient.

4. θ̂ is efficient

Proof. 1. The result clearly holds since the value of the likelihood is unaffected by such a reparameteri-
sation.

2. Proof is omitted.

3. Suppose T is sufficient for θ then the likelihood can be factorised as

L(θ, x) = κ1(T(x), θ)κ2(x)

For any particular random sample x the maximum is determined by the maximum of κ1 (as no infor-
mation about θ can be obtained from κ2) and hence θ̂ is a function of T.
But T is a sufficient statistic so hence θ̂ is also a sufficient statistic.

4. Suppose θ′ is an unbiassed efficient estimator for θ. Then

∂l
∂θ

= Iθ(θ′ − θ)

from which it is evident that θ = θ′ is a maximum likelihood estimation for θ. �
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Exponential Families & Maximum Likelihood Estimators

Exponential families can be used to find minimal sufficient statistics, and in a similar way then can be used
to find maximum likelihood estimators.

Theorem 19 Suppose X1, X2, . . . , Xn are independently and identically distributed with

f (x, φ) = C(x) exp (φB(x) + D(φ))

then the maximum likelihood estimator of φ solves the equation

1
n

n

∑
i=1

B(xi) = E B(X)

Proof. Calculating the likelihood,

L(θ, x) = exp

(
φ

n

∑
i=1

B(xi) + nD(φ)

)
n

∏
i=1

C(xi)

so
∂l
∂φ

=
n

∑
i=1

B(xi) + n
dD
dφ

(20)

Hence the maximum likelihood estimator obeys the equation

n

∑
i=1

B(xi) = −n
dD
dφ

(21)

Now, E ∂l
∂φ = 0 and hence taking expectations on equation 20 gives

n E B(X) = −n
dD
dφ

(22)

Hence using equations 21 and 22

n E B(X) =
n

∑
i=1

B(xi)
�

It is simple to verify that ∂2 l
∂φ2 < 0. In the case of k parameters the maximum likelihood estimators satisfy

n

∑
i=1

Bj(xi) = −n
∂D
∂φj

= n E Bj(X)

It is worth noting that an analytic solution to ∂l
∂θ = does not always exist. However, the use of numerical

methods means that in all practical circumstances a value for the maximum likelihood estimator can be
found.

(23.1.4) Implications Of The Central Limit Theorem

If X1, X2, . . . , Xn are independently and identically distributed random variables and T is an estimator for
the parameter θ it is desirable to find the sampling distribution for T. Most generally this does not exist, but
even so the Central Limit Theorem may be of use.

Theorem 23 (The Central Limit Theorem) Let Y1, Y2, . . . , Yn be independently and identically distributed random
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variables with E Yi = µ and var Yi = σ2. Then

√
n

σ
(Y− µ) → Z as n → ∞

where Z ∼ N (0, 1).

The immediate consequence of this is that if T = X then T has the approximate sampling distribution
N
(

E X, var X
n

)
.

Efficient Estimators

Let iθ be the expected Fisher information from a single observation, so

Iθ = −E

(
∂2l
∂θ2

)
= −

n

∑
i=1

E

(
∂2l(xi, θ)

∂θ2

)
= niθ

Lemma 24 Let T(X1, X2, . . . , Xn) be an unbiassed and efficient estimator for θ. Then as n → ∞,

√
n(T − θ) → N

(
0,

1
iθ

)

Proof. Let Y = ∂ ln f (Xi ,θ)
∂θ then since this represents a log likelihood for n = 1, E Yi = 0 and var Yi = iθ .

Hence by the Central Limit Theorem

√
n
iθ

(
1
n

n

∑
i=1

Yi

)
=
√

n
iθ

(
1
n

∂l
∂θ

)
→ N (0, 1)

Now, since T is unbiassed and efficient

∂l
∂θ

= (T − θ)Iθ = (T − θ)niθ

and so using this with equation ?? gives √
niθ(T − θ) → N (0, 1)

which is equivalent to the result required. �

This result means that whenever T is an unbiassed and efficient estimator, N
(

θ, 1√
iθ

)
is an approximate

sampling distribution for T.

In a similar way to an unbiassed efficient estimator, the sampling distribution of a maximum likelihood
estimators is also asymptotic to a Normal distribution. This is in fact the same Normal distribution, i.e.

√
n(θ̂ − θ) → N

(
0,

1
iθ

)

Reparameterised Maximum Likelihood Estimators

Perhaps a little surprisingly the effect of reparameterising a distribution has no effect on the asymptotic
Normality of the maximum likelihood estimator (for the new parameter). The speed of convergence may
differ, so clearly a good reparameterisation can be worthwhile.
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Distributions With Multiple Parameters

The proper generalisation of this section is to deal with k rather than just 1 parameter. Examples include the
Normal and Γ distributions when all parameters are unknown. It is fairly clear that

E

(
∂ f
∂θj

)
= 0 and E

(
∂ f
∂θj

∂ f
∂θk

)
= Ijk

where I is the expected information matrix. A score vector u can be defined in the obvious way and in fact
I is the variance co-variance matrix of u. The asymptotic result in this case is

ˆ̀ML →MN
(

`, I−1
)

Note that I has an inverse since it is positive definite.

(23.2) Hypothesis Testing

(23.2.1) Construction Of A Hypothesis Test

Let Ω be the set of all possible values of a parameter θ and let ω ⊂ Ω. A hypothesis test takes hypothesis

H0: θ ∈ ω, the null hypothesis.

H1: θ ∈ Ω \ω, the alternative hypothesis.

The test will reject H0 in favour of H1 when x ∈ C where x is the data and C is the ‘critical region’.

Definition 25 A hypothesis is said to be simple if it corresponds to a single point of Ω. Otherwise it is said to be
composite.

It is worth noting that H0 : µ = 0 is not simple in the case of a Normal distribution. This is because σ is not
specified.

Testing Simple Hypotheses

In the case of testing simple hypotheses H0 : θ = θ0 and H1 : θ = θ1 where Ω = {θ1, θ2}. Clearly such a test
could go wrong in one of two ways.

• H0 is rejected when it is true. This is a type 1 error and has probability α.

• H0 is accepted when it is false. This is a type 2 error and has probability β.

The probability of rejecting H0 when it is false is clearly useful in evaluating a hypothesis test. This quantity,
1− β, is called the power of the test.

The type 1 error corresponds exactly to the significance level of the test. This is also called the size of the
test.

Lemma 26 (Neyman-Pearson) The most powerful test of size α has a critical region of the form

C =
{

x | L(θ1, x)
L(θ0, x)

> A
}

where A is a constant.
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Proof. Let C be the critical region as described and let C′ be the critical region of another test with size less
than or equal to α. The difference in powers of these tests is then given by

Pr {X ∈ C | θ1} − Pr
{

X ∈ C′ | θ1
}

=
∫

C
L(θ1, x) dx−

∫
C′

L(θ1, x) dx

=
∫

C\C′
L(θ1, x) dx−

∫
C′\C

L(θ1, x) dx

Now, L(θ1, x) > AL(θ0, x) for x ∈ C and the reverse inequality holds for x /∈ C. Hence

>
∫

C\C′
AL(θ0, x) dx−

∫
C′\C

AL(θ0, x) dx

=
∫

C
AL(θ0, x) dx−

∫
C′

AL(θ0, x) dx

= A
(
Pr {X ∈ C | θ0} − Pr

{
X ∈ C′ | θ0

})
> A(α− α) = 0

Hence the power of the test with critical region C is at least that with critical region C′. The proof need only
be given for the test C′ with size α but as it also works for size 6 α this is done. �

Although apparently complicated, the Neyman-Pearson lemma can reduce to give quite simple results.
Consider the case of N (θ, 1).

C =

x |

(
1√
2π

)n
exp

(
−1
2 ∑n

i=1 (xi − θ1)2
)

(
1√
2π

)n
exp

(
−1
2 ∑n

i=1 (xi − θ2)2
) > A


=

{
x | exp

(
−1
2

n

∑
i=1

(xi − θ1)2 − −1
2

n

∑
i=1

(xi − θ0)2

)
> A

}

=

{
x | e

−1
2 exp

(
2(θ0 − θ1)

n

∑
i=1

xi +
n
2

(
θ2

1 − θ2
0

))
> A

}

=

{
x | exp

(
(θ1 − θ0)

n

∑
i=1

xi

)
> A′

}

=

{
x | (θ1 − θ0)

n

∑
i=1

xi > A′′
}

=


{

x | ∑n
i=1 6 A′′′

}
if θ1 − θ0 < 0{

x | ∑n
i=1 > A′′′

}
if θ1 − θ0 > 0

The value of A is determined by the size of the test, it must be chosen such that

Pr
{

L(θ1, x)
L(θ0, x)

> A | θ0

}
= α

To actually calculate this the null distribution for the test statistic must be specified. In the case where the
test statistic has a standard Normal distribution, A = Φ−1(1− α).

In the case of discrete data it may not be possible to achieve a size of α exactly. In this case a randomised
test may be used. For example

• Accept H0 if T 6 7.

• Reject H0 if T > 9.



23.2. HYPOTHESIS TESTING 15

• If T = 8 then reject H0 with probability p.

where T is a suitably chosen test statistic.

Composite Alternative Hypotheses

The familiar hypothesis test will have H0 : θ = θ0 and H1 : θ 6= θ0, or possibly a one-sided alternative. In
such a case the power of the test depends on precisely which θ ∈ Ω \ω is taken.

Definition 27 For a hypothesis with critical region C define the power function η by

η(θ) = Pr {X ∈ C | θ}

The size of the test is η(θ0).

Definition 28 A hypothesis test is said to be uniformly most powerful of size α if

1. η(θ0) = α

2. where η∗ is the power function of any other test of size α then η(θ) > η∗(θ) for all θ ∈ Ω \ {θ0}.

Lemma 29 Suppose H0 is simple and H1 is composite. If the likelihood ratio test of size α for testing against

H′
1 : θ = θ′ θ′ ∈ Ω \ω

does not depend on θ′ then it is uniformly most powerful.

Proof. By the Neyman-Pearson lemma the likelihood ratio test is the most powerful of size α. As (by hy-
pothesis) there is no dependence on θ′ the definition of being uniformly most powerful is satisfied. �

Maximum Likelihood Ratio Tests

Most generally the null and alternative hypotheses are both composite. Say

H0 : θ ∈ ω H1 : θ ∈ Ω \ω

then define

λ =
supθ∈ω L(θ, x)
supθ∈Ω L(θ, x)

=
L(θ̂ω , x)
L(θ̂, x)

A maximum likelihood ratio test then has the critical region {x | λ 6 A}. Clearly 0 6 λ 6 1, and if H0 is
true the value should be near 1. Such a test readily reduces to a likelihood ratio test for simple hypotheses
since for simple hypotheses

λ =
L(θ0, x)

max {L(θ0, x), L(θ1, x)} = min
{

1,
L(θ0, x)
L(θ1, x)

}
Since in practise A < 1 this always gives the likelihood ratio test. It can also be shown that if a uniformly
most powerful test exists for a simple null hypothesis then it s a maximum likelihood ratio test.

Example 30 If X1, X2, . . . , Xn are independently and identically distributed with distribution N
(
µ, σ2) where both

µ and σ2 are unknown, test H0 : µ = µ0 against H1 : µ 6= µ0.

Proof. Solution The test has composite null and alternative hypotheses with

Ω =
{

(µ, σ2) | µ ∈ R σ2 ∈ R+
0

}
ω =

{
(µ0, σ2) | σ2 ∈ R+

0

}
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Now, for µ = µ0

L(µ0σ2, x) =
(

1
σ
√

2π

)n
exp

(
−1
2

n

∑
i=1

(
xi − µ0

σ

))

l(µ0σ2, x) =
−2
n

ln σ2 − 2
n

ln 2π − 1
2

n

∑
i=1

(
xi − µ0

σ

)
∂l

∂σ2 =
−1
2σ2 −

1
2σ4

n

∑
i=1

(xi − µ0)2

σ̃2 =
1
n

n

∑
i=1

(xi − µ0)2

For the denominator, the usual maximum likelihood estimates are

µ̂ = x σ̂2 =
1
n

n

∑
i=1

(xi − x)2

Hence

λ =

(
1

σ̃
√

2π

)n
exp

(
−1
2σ̃2 ∑n

i=1 (xi − µ0)
)

(
1

σ̂
√

2π

)n
exp

(
−1
2σ̂2 ∑n

i=1 (xi − x)
)

=
(

σ̃2

σ̂2

) −n
2

=

(
∑n

i=1 (xi − x)2 + n(x− µ0)
∑n

i=1 (xi − x)2

) −n
2

=
(

1 +
t2

n− 1

) −n
2

where t =
√

n(x−µ0)
s is the usual t statistic. The maximum likelihood ratio test is therefore the usual two

sided t test in disguise. �

Lemma 31 When H0 is true and n is large
−2 ln λ ∼ χ2

q

where q is the difference between the number of parameters of the distribution of the data and the number of parameters
fixed in the null hypothesis.

This result is of use when the exact distribution of λ cannot be determined.

Two-Sided Alternative Hypotheses

So far only one sided alternatives have been considered. Consider testing H0 : θ = θ0 against H1 : θ 6= θ0.

The score test uses the score function u(θ) = ∂l
∂θ and since for large n its distribution is approximately

Normal, u(θ) ∼ N (0, Iθ). Hence use the test statistic

Wu =
(u(θ0))2

Iθ0

which has null distribution χ2
1.

Alternatively the Wald test, or maximum likelihood estimator test uses θ̂, the maximum likelihood estimate,
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and since for large n
θ̂ ∼ N

(
θ, I−1

θ

)
define the test statistic

We =
(
θ̂ − θ0

)2 Iθ̂

which has (approximately) a χ2
1 null distribution. An alternative to to use We =

(
θ̂ − θ0

)2 Iθ0 but this is
rarely done.

A third alternative is to use the statistic −2 ln λ, as all of these have an approximate χ2
1 distribution.

(23.2.2) Hypothesis Testing & Confidence Intervals

Consider testing the hypothesis Hθ0 : θ = θ0 against the alternative H1 : θ 6= θ0. If Cθ0 is the critical region
then

Sx =
{

θ0 | x ∈ Cc
θ0

}
is a 100(1− α)% confidence region for θ where α is the size of the test. It is simply the set of θ0s that would
not be rejected by the test.

A confidence interval can be constructed using one of many statistics, as indeed can a hypothesis test. The
Wald statistic We, the score statistic Wu and the maximum likelihood ratio statistic −2 ln λ are of particular
interest due to their universal applicability.

Single Parameter Confidence Intervals

Consider testing H0 : θ = θ0 against the alternative H1 : θ 6= θ0. The maximum likelihood ratio is then
λ = L(θ0)

L(θ̂)
, and −2 ln λ has (in this case) an approximate χ2

1 distribution from which a confidence interval
can be constructed.

Two Parameter Confidence Intervals

Consider a situation where the unknown parameters are θ and K. The parameter K is of interest and a
confidence interval must be constructed for it, whereas θ is just a nuisance. Testing H0 : K = K0 against
H1 : K 6= K0 has a composite null hypothesis so a maximum likelihood ratio test can be used. Let K̂ be
the maximum likelihood estimate of K and let θ̂K be the maximum likelihood estimate of θ when K has a
prescribed value. Hence

λ =
supθ L(θ, K0)

sup(θ,K) L(θ, K)
=

L
(
θ̂K0 , K0

)
L
(
θ̂K̂ , K̂

) =
Lp(K0)

Lp(K̂)

where Lp(K) = L(θ̂K , K) is the likelihood profile∗ for K. As there are two parameters and one is given in the
null case, −2 ln λ is approximately distributed as χ2

1.

Confidence Intervals For k Parameters

First of all consider the simple null hypothesis H0 : ` = `0 testing against H1 : ` 6= `0.

• The score statistic Wu is calculated as

Wu = uT(`0)I−1
`0

u(`0)

∗In this two parameter case the likelihood is a surface in three dimensions. Fixing θ in this way allows a two dimen-
sional plot to be made of the intersection of the likelihood surface with the plane θ = θ̂K .
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where u(`) is the score vector and I` is the information matrix.

• The Wald statistic We is calculated as

We =
(ˆ̀− `0

)T Iˆ̀
(ˆ̀− `0

)
When H0 is true both these statistics and the maximum likelihood ratio statistic −2 ln λ are approximately
equal and have approximate distribution χ2

k .

When the null hypothesis is composite, say H0 : ` ∈ ω and H1 : ` ∈ Ω \ ω the value `0 is replaced by ˆ̀ω to
give

Wu = uT(ˆ̀ω)I−1
ˆ̀
ω

u(ˆ̀ω)

We =
(ˆ̀− ˆ̀ω

)T Iˆ̀
(ˆ̀− ˆ̀ω

)
λ =

L
(ˆ̀ω
)

L
(ˆ̀)

In this case the approximate distribution is χ2
q where q parameters are specified in H0.

(23.2.3) The Multinomial Distribution

An application of the above theory to the multinomial distribution produces the familiar Pearson’s goodness
of fit test, as well as an alternative.

Definition 32 Let n objects be placed at random into k boxes and let pi be the probability that an object goes into box
i, which is the same for all objects. Let Xi be the number of objects in box i then

Pr {X1 = x1, X2 = x2, . . . , Xk = xk} =
n!

x1!x2!, . . . , xk!
px1

1 px2
2 . . . pxk

k

is said to be a multinomial distribution.

Let X ∼ Mn(p1, p2, . . . , pk). Since ∑k
i=1 pi = 1 only k− 1 of the ps are ‘independent’, say pk = 1−∑n−1

i=1 pi.
Now,

L ∝ px1
1 px2

2 . . . pxk−1
k−1

(
1−

k−1

∑
i=1

xi ln pi

)xk

l = c +
k−1

∑
i=1

xi ln pi + xk ln

(
1−

k−1

∑
i=1

xi ln pi

)
∂l

∂pj
=

xj

pj
− xk

pk
(33)

p̂j =
xj

xk
p̂k now sum over j, the number of boxes

1 =
n
xk

p̂k

p̂k =
xk
n

But the p chosen to be calculated as 1 take the sum of the rest can be chosen at will, and hence this holds for
any 1 6 j 6 k so that p̂j = xj

n .
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Consider testing the (simple) hypothesis H0 : pi = πi for all 1 6 i 6 k against H1 : pi 6= πi for some i. It can
be shown that p̂i = xi

n and hence

λ =
(

π1
p̂1

)x1
(

π2
p̂2

)x2

. . .
(

πk
p̂k

)xk

(34)

Since all the pis are specified in the null hypothesis this means that −2 ln λ has an approximate χ2
k−1 distri-

bution.

Returning to equation 33 the score vector (of length k− 1) has jth element uj = xj
pj
− xk

pk
and so

− ∂2l
∂pi∂pj

=


xj

p2
j
+ xk

p2
k

if i = j

xk
p2

k
if i 6= j

Replacing x with X and taking expected values will now give the information matrix. Observe that E Xj =
npj and hence

Iij =


n
pj

+ n
pk

if i = j
n
pk

if i 6= j
so I = n

(
1
pk

11T + D−1
)

where 1 is the (k − 1)× 1 vector of 1s and D is a diagonal matrix with Dii = pi. Using this the Wald and
score statistics can be calculated. This is a rather lengthy process, particularly for the score statistic. The
final results are

We = n
k

∑
i=1

( p̂i − πi)
2

p̂i
(35)

Wu = n
k

∑
i=1

( p̂i − πi)
2

πi
(36)

Equation (36) is the familiar ‘goodness of fit’ test statistic—the Pearson χ2 statistic. However, the Wald
statistic, equation (35), and −2 ln λ where λ is as in equation (34) are both perfectly good alternatives for
goodness of fit testing.
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